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Overview
In this document, we first present the network details in Section 1. Then, we further analyze the effectiveness of the

proposed cascaded training and temporal sharpness prior in Section 2 and Section 3. In Section 4, we demonstrate that the
proposed algorithm is able to generate clear images frame by frame and has a better temporal consistent property. Finally,
we show more visual comparisons on both synthetic and real-world images in Section 5.

1. Network Details
As stated in Section 4 of the manuscript, the proposed algorithm contains the optical flow estimation module, latent

frame restoration module, and the temporal sharpness prior. Figure 1 shows the flowchart of the proposed algorithm at one
stage. The proposed network shares the same network parameters when handling every three adjacent frames. The network
architecture for the latent image restoration is shown in Figure 2. For the optical flow estimation, we use the PWC-Net [5] to
estimate optical flow. All the network modules are jointly trained in an end-to-end manner.
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Figure 1. An overview of the proposed method at one stage. The proposed algorithm contains the optical flow estimation module, latent
image restoration module, and the temporal sharpness prior. All the modules are jointly trained in an end-to-end manner. At each stage, it
takes three adjacent frames estimated from the previous stage as the input and generates the deblurred results of the central frame. When
handling every three adjacent frames, the proposed network shares the same network parameters. The variables Ĩi+1(x) and Ĩi−1(x)
denote the warped results of Ii+1(x + ui+1→i) and Ii−1(x + ui−1→i), respectively.

2. Effectiveness of the Cascaded Training
As stated in Section 6.1 of the manuscript, we have analyzed the effectiveness of the cascaded training for video deblurring.

In this supplemental material, we further show more visual comparisons to demonstrate the effectiveness of the cascaded
training. Figure 3 shows that using the cascaded training method is able to generate much clearer images.

3. Effectiveness of the Temporal Sharpness Prior
As stated in Section 6.2 of the manuscript, we have analyzed the effectiveness of the temporal sharpness prior for video

deblurring. In this supplemental material, we further show more visual comparisons to demonstrate the effectiveness of the
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Figure 2. Detailed network architectures for the latent frame restoration. Each convolutional and deconvolutional layers are followed by a
ReLU unit except the last one that outputs the latent frame. The number of feature channels in intermediate layers are 32, 64, 128, 128,
64, and 32, respectively.

cascaded training. Figure 4 shows that using the temporal sharpness prior is able to distinguish the sharpness pixels and
blurred pixels from adjacent frames and generates much clearer images.

4. Temporal Consistency Property
In the manuscript, we only show some deblurred frames. One may wonder whether the proposed algorithm is able to

deblur all the frames and has a better temporal consistent property or not. To demonstrate the effectiveness of the proposed
algorithm on temporal consistency, we show a real deblurred video in Figure 5. The restored video results show that the
proposed algorithm deblurs each frame well and generates a much clear video. Thus, it has a better temporal consistency
property than other methods.

5. More Experimental Results
In this section, we provide more visual comparisons with state-of-the-art methods on both synthetic (Figures 6-11) and

real-world (Figures 12-14) images. The proposed algorithm generates much clearer frames.



(a) Blurred frames (b) w/o cascaded training (c) Ours (d) GT
Figure 3. Effectiveness of the cascaded training for video deblurring. Using the cascaded training is able to generate much clearer images
while the method without using cascaded training method is less effective for blur removal.



(a) Cropped blurred patches (b) TSP (c) w/o TSP (d) Ours
Figure 4. Effectiveness of the temporal sharpness prior (TSP) for video deblurring. Using the TSP is able to generate much clearer images
while the method without TSP is less effective for blur removal.



(a) Blurred video (b) Kim et al. [2]

(c) Su et al. [4] (d) EDVR [7]

(e) STFAN [8] (f) Ours
Figure 5. Temporal consistency property. State-of-the-art methods do not deblur each frame well and there exist significant blur residual in
some frames. In contrast, the proposed algorithm deblurs each frame well, where the characters and structures of the buildings are much
clearer. Thus, it has a better temporal consistency property than other methods. (Please use the Adobe Acrobat Reader to view the video
with high-resolution display. For better visualization comparisons, the FPS is set to be 2.)



(a) Cropped blurred patches (b) Tao et al. [6]

(c) Su et al. [4] (d) EDVR [7]

(e) STFAN [8] (f) Ours
Figure 6. Deblurred results on the test dataset [4]. Our method generates the image with much clearer characters.



(a) Cropped blurred patches (b) Tao et al. [6]

(c) Su et al. [4] (d) EDVR [7]

(e) STFAN [8] (f) Ours
Figure 7. Deblurred results on the test dataset [4]. State-of-the-art methods generate the deblurred images with significant blur residual. In
contrast, our method generates the image with clearer structural details.



(a) Cropped blurred patches (b) Tao et al. [6]

(c) Su et al. [4] (d) EDVR [7]

(e) STFAN [8] (f) Ours
Figure 8. Deblurred results on the test dataset [3]. State-of-the-art methods generate the deblurred images with significant blur residual and
artifacts. In contrast, our method generates a clearer image with recognizable characters.



(a) Cropped blurred patches (b) Tao et al. [6]

(c) Su et al. [4] (d) EDVR [7]

(e) STFAN [8] (f) Ours
Figure 9. Deblurred results on the test dataset [3]. State-of-the-art methods generate the deblurred images with significant blur residual. In
contrast, our method generates a clearer image, where the face is much clearer.



(a) Cropped blurred patches (b) Tao et al. [6]

(c) Su et al. [4] (d) EDVR [7]

(e) STFAN [8] (f) Ours
Figure 10. Deblurred results on the test dataset [3]. State-of-the-art methods generate the deblurred images with significant blur residual.
In contrast, our method generates a clearer image with recognizable characters.



(a) Cropped blurred patches (b) Tao et al. [6]

(c) Su et al. [4] (d) EDVR [7]

(e) STFAN [8] (f) Ours
Figure 11. Deblurred results on the test dataset [3]. State-of-the-art methods generate the deblurred images with significant blur residual
and artifacts. In contrast, our method generates a much clearer image.



(a) Cropped blurred patches (b) Kim et al. [2]

(c) Su et al. [4] (d) EDVR [7]

(e) STFAN [8] (f) Ours
Figure 12. Deblurred results on a real video from [1]. State-of-the-art methods generate the deblurred images with significant blur residual.
In contrast, our method generates a much clearer image with finer structural details.



(a) Cropped blurred patches (b) Tao et al. [6]

(c) Su et al. [4] (d) EDVR [7]

(e) STFAN [8] (f) Ours
Figure 13. Deblurred results on a real video from [1]. State-of-the-art methods generate the deblurred images with significant blur residual.
In contrast, our method generates a clearer image with recognizable characters.



(a) Cropped blurred patches (b) Tao et al. [6]

(c) Su et al. [4] (d) EDVR [7]

(e) STFAN [8] (f) Ours
Figure 14. Deblurred results on a real video from [1]. State-of-the-art methods generate the deblurred images with significant blur residual.
In contrast, our method generates a clearer image with recognizable characters and finer structural details.
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