
Supplementary

A. Overview
In this document we provide additional experimental re-

sults and extended technical details to supplement the main
submission. We first discuss the effects on the output of
the system made by changes in the loss functions (Sec. B),
scene surface characteristics (surface roughness) (Sec. C),
and number of material bases (Sec. D). We then showcase
our system’s ability to model the Fresnel effect (Sec. E),
and compare our method against a recent BRDF estimation
approach (Sec. F). In Sections G,H, we explain the data cap-
ture process and provide additional implementation details.
Finally, we describe our supplementary video (Sec. I), show
additional novel-view synthesis results along with their in-
termediate rendering components (Sec. J).

B. Effects of Loss Functions
In this section, we study how the choice of loss func-

tions affects the quality of environment estimation and
novel view synthesis. Specifically, we consider three loss
functions between prediction and reference images as in-
troduced in the main paper: (i) pixel-wise L1 loss, (ii)
neural-network based perceptual loss, and (iii) adversarial
loss. We run each of our algorithms (environment estima-
tion and novel-view synthesis) for the three following cases:
using (i) only, (i+ii) only, and all loss functions combined
(i+ii+iii). For both algorithms we provide visual compar-
isons for each set of loss functions in Figures 1,2.

B.1. Environment Estimation

We run our joint optimization of SRMs and material
weights to recover a visualization of the environment us-
ing the set of loss functions described above. As shown in
Fig. 2, the pixel-wise L1 loss was unable to effectively pe-
nalize the view prediction error because it is very sensitive
to misalignments due to noisy geometry and camera pose.
While the addition of perceptual loss produces better re-
sults, one can observe muted specular highlights in the very
bright regions. The adversarial loss, in addition to the two
other losses, effectively deals with the input errors while
simultaneously correctly capturing the light sources.

B.2. Novel-View Synthesis

We similarly train the novel-view neural rendering net-
work in Sec. 6 using the aforementioned loss functions. Re-
sults in Fig. 1 shows that while L1 loss fails to capture spec-
ularity when significant image misalignments exist, the ad-
dition of perceptual loss somewhat addresses the issue. As
expected, using adversarial loss, along with all other losses,
allows the neural network to fully capture the intensity of
specular highlights.

(a) GT (b) L1 Loss (c) L1+Percept (d) All Losses

Figure 1: Effects of loss functions on neural-rendering. The spec-
ular highlights on the forehead of the Labcat is expressed weaker
than it actually is when using L1 or perceptual loss, likely due to
geometric and calibration errors. The highlight is best expressed
when the neural rendering pipeline of Sec. 6 is trained with the
combination of L1, perceptual, and adversarial loss.

C. Effects of Surface Roughness
As descrbied in the main paper, our recovered specu-

lar reflectance map is environment lighting convolved with
the surface’s specular BRDF. Thus, the quality of the esti-
mated SRM should depend on the roughness of the surface,
e.g. a near Lambertian surface would not provide signifi-
cant information about its surroundings. To test this claim,
we run the SRM estimation algorithm on a synthetic object
with varying levels of specular roughness. Specifically, we
vary the roughness parameter of the GGX shading model
[11] from 0.01 to 1.0, where smaller values correspond to
more mirror-like surfaces. We render images of the syn-
thetic object, and provide those rendered images, as well
as the geometry (with added noise in both scale and vertex
displacements, to simulate a real scanning scenario), to our
algorithm. The results show that the accuracy of environ-
ment estimation decreases as the object surface gets more
rough, as expected (Fig. 6). Note that although increas-
ing amounts of surface roughness does cause the amount of
detail in our estimated environments to decrease, this is ex-
pected, as the recovered SRM still faithfully reproduces the
convolved lighting (Fig. 5).

D. Effects of Number of Material Bases
The joint SRM and segmentation optimization of the

main paper requires a user to set the number of material
bases. In this section, we study how the algorithm is af-
fected by the user specified number. Specifically, for a
scene containing two cans, we run our algorithm twice, with
number of material bases set to be two and three, respec-
tively. The results of the experiment in Figure 3 suggest
that the number of material bases does not have a signifi-
cant effect on the output of our system.
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Figure 2: Environment estimation using different loss functions. From input video sequences (a), we run our SRM estimation algorithm,
varying the final loss function between the view predictions and input images. Because L1 loss (b) is very sensitive to misalignments
caused by geometric and calibration errors, it averages out the observed specular highlights, resulting in missing detail for large portions of
the environment. While the addition of perceptual loss (c) mitigates this problem, the resulting SRMs often lose the brightness or details
of the specular highlights. The adoption of GAN loss produces improved results (d).

(a) Input Texture (b) Material Weight,
M = 2

(c) Material Weight,
M = 3

(d) Recovered SRM, M = 2 (e) Recovered SRM, M = 3

Figure 3: Sensitivity to the number of material bases M . We run
our SRM estimation and material segmentation pipeline twice on a
same scene but with different number of material bases M , show-
ing that our system is robust to the choice of M . We show the
predicted combination weights of the network trained with two (b)
and three (c) material bases. For both cases (b,c), SRMs that cor-
respond to the red and blue channel are mostly black, i.e. diffuse
BRDF. Note that our algorithm consistently assigns the specular
material (green channel) to the same regions of the image (cans),
and that the recovered SRMs corresponding to the green channel
(d,e) are almost identical.

E. Fresnel Effect Example
The Fresnel effect is a phenomenon where specular high-

lights tend to be stronger at near-glancing view angles, and
is an important visual effect in the graphics community. We
show in Fig. 4 that our neural rendering system correctly
models the Fresnel effect. In the supplementary video, we
show the Fresnel effect in motion, along with comparisons
to the ground truth sequences.

F. Comparison to BRDF Fitting
Recovering a parametric analytical BRDF is a popular

strategy to model view-dependent effects. We thus compare
our neural network-based novel-view synthesis approach
against a recent BRDF fitting method of [8] that uses an IR
laser and camera to optimize for the surface specular BRDF
parameters. As shown in Fig. 7, sharp specular BRDF fit-
ting methods are prone to failure when there are calibration
errors or misalignments in geometry.

G. Data Capture Details
As described in Sec. 7 of the main paper, we capture ten

videos of objects with varying materials, lighting and com-
positions. We used a Primesense Carmine RGBD structured
light camera. We perform intrinsic and radiometric calibra-
tions, and correct the images for vignetting. During capture,
the color and depth streams were hardware-synchronized,
and registered to the color camera frame-of-reference. The
resolution of both streams are VGA (640x480) and the
frame rate was set to 30fps. Camera exposure was man-
ually set and fixed within a scene.

We obtained camera extrinsics by running ORB-SLAM
[6] (ICP [7] was alternatively used for feature-poor scenes).
Using the estimated pose, we ran volumetric fusion [7] to
obtain the geometry reconstruction. Once geometry and
rough camera poses are estimated, we ran frame-to-model
dense photometric alignment following [8] for more accu-
rate camera positions, which are subsequently used to fuse
in the diffuse texture to the geometry. Following [8], we
use iteratively reweighted least squares to compute a robust
minimum of intensity for each surface point across view-
points, which provides a good approximation to the diffuse
texture.
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Figure 4: Demonstration of the Fresnel effect. The intensity of specular highlights tends to be amplified at slant viewing angles. We show
three different views (a,b,c) for a glossy bottle, each of them generated by our neural rendering pipeline and presenting different viewing
angles with respect to the bottle. Notice that the neural rendering correctly amplifies the specular highlights as the viewing angle gets closer
to perpendicular with the surface normal. Images (d,e,f) show the computed Fresnel coefficient (FCI) (see Sec. 6.1) for the corresponding
views. These images are given as input to the neural-renderer that subsequently use them to simulate the Fresnel effect. Best viewed
digitally.

H. Implementation Details
Our pipeline is built using PyTorch [9]. For all of our ex-

periments we used ADAM optimizer with learning rate 2e-4
for the neural networks and 1e-3 for the SRM pixels. For
the SRM optimization described in Sec. 5 of the main text
the training was run for 40 epochs (i.e. each training frame
is processed 40 times), while the neural renderer training
was run for 75 epochs.

We find that data augmentation plays a significant role
to the view generalization of our algorithm. For training in
Sec. 5, we used random rotation (up to 180◦), translation
(up to 100 pixels), and horizontal and vertical flips. For
neural renderer training in Sec. 6, we additionally scale the
input images by a random factor between 0.8 and 1.25.

We use Blender [1] for computing the reflection direction
image RP and the first bounce interreflection (FBI) image
described in the main text.

H.1. Network Architectures

Let C(k,ch in,ch out,s) be a convolution layer
with kernel size k, input channel size ch in, out-
put channel size ch out, and stride s. When the
stride s is smaller than 1, we first conduct nearest-
pixel upsampling on the input feature and then process
it with a regular convolution layer. We denote CNR and
CR to be the Convolution-InstanceNorm-ReLU layer and
Convolution-ReLU layer, respectively. A residual block
R(ch) of channel size ch contains convolutional layers of
CNR(3,ch,ch,1)-CN(3,ch,ch,1), where the final
output is the sum of the outputs of the first and the second
layer.

Encoder-Decoder Network Architecture The architec-
ture of the texture refinement network and the neural ren-
dering network in Sec.5 and Sec.6 closely follow the archi-
tecture of an encoder-decoder network of Johnson et al. [5]:
CNR(9,ch in,32,1)-CNR(3,32,64,2)-CNR(3,64,
128,2)-R(128)-R(128)-R(128)-R(128)-R(128)
-CNR(3,128,64,1/2)-CNR(3,64,32,1/2)
-C(3,32,3,1), where c in represents a variable input
channel size, which is 3 and 13 for the texture refinement
network and neural rendering generator, respectively.
Material Weight Network The architecture of the
material weight estimation network in Sec. 5 is as follows:
CNR(5,3,64,2)-CNR(3,64,64,2)-R(64)-R(64)-
CNR(3,64,32,1/2)-C(3,32,3,1/2).
Discriminator Architecture The discriminator network
used for the adversarial loss in Eq.7 and Eq.8 of the
main paper both use the same architecture as follows:
CR(4,3,64,2)-CNR(4,64,128,2)-CNR(4,128,
256,2)-CNR(4,256,512,2)-C(1,512,1,1). For
this network, we use a LeakyReLU activation (slope 0.2)
instead of the regular ReLU, so CNR used here is a
Convolution-InstanceNorn-LeakyReLU layer. Note that the
spatial dimension of the discriminator output is larger than
1x1 for our image dimensions (640x480), i.e., the discrimi-
nator scores realism of patches rather than the whole image
(as in PatchGAN [3]).

I. Supplementary Video
We strongly encourage readers to watch the supplemen-

tary video†, as many of our results we present are best seen
as videos. Our supplementary video contains visualizations

†Video URL: https://youtu.be/9t_Rx6n1HGA

https://youtu.be/9t_Rx6n1HGA


(a) Ground Truth Environment

(b) Input Frame (c) Recovered SRM (GGX roughness 0.01)

(d) Input Frame (e) Recovered SRM (GGX roughness 0.1)

(f) Input Frame (g) Recovered SRM (GGX roughness 0.7)

Figure 5: Recovering SRM for different surface roughness. We
test the quality of estimated SRMs (c,e,g) for various surface mate-
rials (shown in (b,d,f)). The results closely match our expectation
that environment estimation through specularity is challenging for
glossy (d) and diffuse (f) surfaces, compared to the mirror-like sur-
faces (c). Note that the input to our system are rendering images
and noisy geometry, from which our system reliably estimates the
environment.

of input videos, environment estimations, our neural novel-
view synthesis (NVS) renderings, and side-by-side compar-
isons against the state-of-the-art NVS methods. We note
that the ground truth videos of the NVS section are cropped
such that regions with missing geometry are displayed as
black. The purpose of the crop is to provide equal visual
comparisons between the ground truth and the rendering,
so that viewers are able to focus on the realism of recon-
structed scene instead of the background. Since the recon-
structed geometry is not always perfectly aligned with the
input videos, some boundaries of the ground truth stream
may contain noticeable artifacts, such as edge-fattening. An
example of this can be seen in the ‘acryl’ sequence, near the
top of the object.

J. Additional Results
Table 1 shows numerical comparisons on novel-view

synthesis against state-of-the-art methods [2, 10] for the
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Figure 6: Accuracy of environment estimation under dif ferent
amounts of surface roughness. We see that increas ing the ma-
terial roughness does indeed decrease the over all quality of the
reconstructed environment image measured in pixel-wise L2 dis-
tance. Note that the roughness parameter is from the GGX [11]
shading model which we use to render the synthetic models.

Cans-L1 Labcat-L1 Cans-perc Labcat-perc
[2] 9.82e-3 6.87e-3 0.186 0.137

[10] 9.88e-3 8.04e-3 0.163 0.178
Ours 4.51e-3 5.71e-3 0.103 0.098

Table 1: Average pixel-wise L1 error and perceptual error values
(lower is better) across the different view synthesis methods on
the two datasets (Cans, Labcat). The L1 metric is computed as
mean L1 distance across pixels and channels between novel-view
prediction and ground-truth images. The perceptual error numbers
correspond to the mean values of the measurements shown in Fig-
ure 7 of the main paper. As described in the main paper, we mask
out the background (e.g. carpet) and focus only on the specular
object surfaces.

two scenes presented in the main text (Fig. 7). We adopt
two commonly used metrics, i.e. pixel-wise L1 and deep
perceptual loss [5], to measure the distance between a pre-
dicted novel-view image and its corresponding ground-truth
test image held-out during training. As described in the
main text we focus on the systems’ ability to extrapolate
specular highlight, thus we only measure the errors on the
object surfaces, i.e. we remove diffuse backgrounds.

Fig. 8 shows that the naı̈ve addition of diffuse and spec-
ular components obtained from the optimization in Sec. 5
does not results in photorealistic novel view synthesis, thus
motivating a separate neural rendering step that takes as
input the intermediate physically-based rendering compo-
nents.

Fig. 9 shows novel-view neural rendering results, to-
gether with the estimated components (diffuse and spec-
ular images DP , SP ) provided as input to the renderer.
Our approach can synthesize photorealistic novel views of
a scene with wide range of materials, object compositions,
and lighting condition. Note that the featured scenes con-



(a) Reference (b) Our Reconstruc-
tion

(c) Reconstruction by
[8]

Figure 7: Comparison with Surface Light Field Fusion [8]. Note
that the sharp specular highlight on the bottom-left of the Corncho
bag is poorly reconstructed in the rendering of [8] (c). As shown in
Sec. B and Fig. 9, these high frequency appearance details are only
captured when using neural rendering and robust loss functions
(b).

(a) Ground Truth (b) Rendering with SRM

Figure 8: Motivation for neural rendering. While the SRM and
segmentation obtained from the optimization of Sec. 5 of the main
text provides high quality environment reconstruction, the simple
addition of the diffuse and specular component does not yield pho-
torealistic rendering (b) compared to the ground truth (a). This
motivates the neural rendering network that takes input as the in-
termediate rendering components and generate photorealistic im-
ages (e.g. shown in Fig. 9).

tain challenging properties such as bumpy surfaces (Fruits),
rough reflecting surfaces (Macbook), and concave surfaces
(Bowls). Overall, we demonstrate the robustness of our ap-
proach for various materials including fabric, metals, plas-
tic, ceramic, fruit, wood, glass, etc.

On a separate note, reconstructing SRMs of planar sur-
faces could require more views to fully cover the environ-
ment hemisphere, because the surface normal variation of
each view is very limited for a planar surface. We refer
readers to Janick et al. [4] that studies capturing planar sur-
face light field, which reports that it takes about a minute
using their real-time, guided capture system.
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(a) Ground Truth GP (b) Our Rendering g(CP ) (c) Specular Component SP (d) Diffuse Component DP

Figure 9: Novel view renderings and intermediate rendering components for various scenes. From left to right: (a) reference photograph,
(b) our rendering, (c) specular reflectance map image, and (d) diffuse texture image. Note that some of the ground truth reference images
have black “background” pixels inserted near the top and left borders where reconstructed geometry is missing, to provide equal visual
comparisons to rendered images.


