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Abstract

In this supplementary document, we first present examples of our occupancy function. In addition, we present a detailed
overview of our network architecture and the training procedure. We then discuss how various components influence the
performance of our model on the single-view 3D reconstruction task. Finally, we provide additional experimental results on
more categories from the ShapeNet dataset [ ] and on the D-FAUST dataset [ ] | together with the corresponding hierarchical
structures. The supplementary video shows 3D animations of the predicted structural hierarchy for various objects from the
ShapeNet dataset as well as humans from the D-FAUST.

1. Occupancy Function

In this section, we provide illustrations of the occupancy function g for different primitive parameters and for different
sharpness values. For any point x € R3, we can determine whether it lies inside or outside a superquadric using its implicit
surface function which is commonly referred to as the inside-outside function:

o (@) ) )
[e%1 (e%)] a3

where @ = [y, ag, arg] determine the size and € = [e1, €3] determine the shape of the superquadric. If f(x;A) = 1.0, the
given point x lies on the surface of the superquadric, if f(x; A) < 1.0 the corresponding point lies inside and if f(x; A) > 1.0

Figure 1: Implicit surface function of superquadrics. We visualize the 2D slice of f(x;) and g(x;) for a superquadric with
a1:a2:a3:e1262:1.



the point lies outside the superquadric. To account for numerical instabilities that arise from the exponentiations in (1),
instead of directly using f(x; A), we follow [8] and use f(x; A)°*. In addition, we also convert the inside-outside function to
an occupancy function, g : R® — [0,1]:

g A) = o (s (1= f(x0)7)) @)

that results in per-point predictions suitable for the classification problem we want to solve. o(+) is the sigmoid function and
s controls the sharpness of the transition of the occupancy function. As a result, if g(x; A) < 0.5 the corresponding point
lies outside and if g(x; \) > 0.5 the point lies inside the superquadric. Fig. 1 visualizes the range of the implicit surface
function of superquadrics of (1) and (2). Fig. 2+3+4 visualize the implicit surface function for different values of ¢; and
€2 and different values of sharpness s. We observe that without applying the sigmoid to (1) the range of values of (1) varies
significantly for different primitive parameters.
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Figure 2: Implicit surface function We visualize the implicit surface function for different primitive parameters and for
different sharpness values. The surface boundary is drawn with red.
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Figure 3: Implicit surface function We visualize the implicit surface function for different primitive parameters and for
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Figure 4: Implicit surface function We visualize the implicit surface function for different primitive parameters and for
different sharpness values. The surface boundary is drawn with red.



2. Implementation Details

In this section, we provide a detailed description of our network architecture. We then describe our sampling strategy and
provide details on the metrics we use both for training and testing. Finally, we show how various components influence the
performance of our model on the single-view 3D reconstruction task.

2.1. Network Architecture
Here we describe the architecture of each individual component of our model, shown in Figure 3 of our main submission.

Feature Encoder: The feature encoder depends on the type of the input, namely whether it is an image or a binary occupancy
grid. For the single view 3D reconstruction task, we use a ResNet-18 architecture [7] (Fig. 5a), which was pretrained on the
ImageNet dataset [5]. From the original design, we ignore the final fully connected layer keeping only the feature vector of
length ' = 512 after average pooling. For the volumetric 3D reconstruction task, where the input is a binary occupancy grid,
we use the feature encoder proposed in [ 1 J(Fig. 5b). Note that the feature encoder is used as a generic feature extractor from
the input representation.

Input Image Average Pooling FC-512 FC-512
1 L |

I '
224
224 —> || ResNet-18 —> T %%ﬁ%

(a) Single-view 3D Reconstruction

Input Voxel Grid Conv-4 MaxPool-4 Conv-8 MaxPool-8 Conv-16  MaxPool-16 Conv-32 MaxPool-32 Conv-64 FC-100 FC-100

329 | 40 I | I | I I R I
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3
43 43 9 -
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—>
@ Conv + BN + Leaky ReLU @ Max Pool % FC + Leaky ReLU

(b) Volumetric 3D Reconstruction

Figure 5: Feature Encoder Architectures. Depending on the type of the input, we employ two different network architec-
tures. (a) For the single view 3D reconstruction task we use a ResNet-18 architecture [7] (b) For a binary occupancy grid as
an input, we leverage the network architecture of [11].

Partition Network: The partition network implements a function py : Rf — R2% that recursively partitions the feature
representation cg of node pg into two feature representations, one for each child {pgkﬂ, pglﬁl}. The partition network

(Fig. 6a) comprises two fully connected layers followed by RELU non linearity.

Structure Network: The structure network maps each feature representation cz to hg a spatial location in R3. The structure
network (Fig. 6b) consists of two fully connected layers followed by RELU non linearity.

Geometry Network: The geometry network learns a function rg : RF — RX x [0, 1] that maps the feature representation
cg to its corresponding primitive parametrization )\z and the reconstruction quality prediction qg. In particular, the geometry
network consists of five regressors that predict the parameters of the superquadrics (size «, shape € and pose as translation
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Figure 6: Network Architecture Overview. The partition network (6a) is simply one hidden layer fully connected network
with RELU non linearity. The gray dotted lines indicate the recursive partition of the feature representation. Similarly, the
structure network (6b) consists of two fully connected layers followed by RELU non linearity.

Input c;f, FC-256 + RELU FC-256 + RELU FC-2 + Sigmoid

Input ¢! FC-256 + RELU  FC-256 + RELU FC-3 + Sigmoid
[ [ . [ | \ 1 1T 1 1
Shape i
P Size
€1, € ay, e, a3
(a) Shape (b) Size
d PC.956 : PC.956 ST U L
Input CZI FC-256 + RELU FC-256 + RELU FC-3 + Tanh Input cj; FC-256 + RELU FC-256 + RELU FC-4
{ 1 | ] 1 \ [ o b b ‘
% % Translations % % Rotla‘tion
t
(c) Translation (d) Rotation
Input cf FC-256 + RELU  FC-256 + RELU FC-1 + Sigmoid
I [T [ [ |
Reconstruction
— — — —» quality

q;\{

(e) Reconstruction quality

Figure 7: Geometry Network. We detail the specifics of each regressor for predicting the primitive parameters )\g and the
reconstruction quality q,fcl.

t and rotation R) in addition to the reconstruction quality qg. Fig. 7 presents the details of the implementation of each
regressor.

2.2. Training

In all our experiments, we use the Adam optimizer [9] with learning rate 0.0001 and no weight decay. For other hyper-
parameters of Adam we use the PyTorch defaults. We train all models with a batch size of 32 for 40k iterations. We do not



perform any additional data augmentation. We weigh the loss terms of Eq. 9 in our main submission with 0.1, 0.01, 0.01
and 0.1 respectively, in order to enforce that during the first stages of training the network will focus primarily on learning
the hierarchical decomposition of the 3D shape (L£; + £,). In this way, after the part decomposition is learned, the network
also focuses on the part geometries (£,.). We also experimented with a two-stage optimization scheme, where we first learn
the hierarchical part decomposition and then learn the hierarchical representation, but we observed that this made learning
harder.

2.3. Sampling Strategy

Sampling a point inside the target mesh has a probability proportional to the volume of the mesh. This yields bad re-
constructions for thin parts of the object, such as legs of chairs and wings of aeroplanes. In addition, biasing the sampling
towards the points inside the target mesh, results in worse reconstructions as also noted in [10]. To address the first issue
(properly reconstructing thin parts), we use an unbalanced sampling distribution that, in expectation, results in sampling an
equal number of points inside and outside the target mesh. To counter the second (biased sampling), we construct an unbi-
ased estimator of the loss by weighing the per-point loss inversely proportionally to its sampling probability. We refer to our
sampling strategy as unbiased importance sampling. Note that throughout all our experiments, we sample 10k points in the
bounding box of the target mesh using our sampling strategy.

2.4. Metrics

We evaluate our model and our baselines using the volumetric Intersection over Union (IoU) and the Chamfer-L; distance.
Note that as our method does not predict a single mesh, we sample points from each primitive proportionally to its area, such
that the total number of sampled points from all primitives is equal to 100k. For a fair comparison, we do the same for [11,12].
Below, we discuss in detail the computation of the volumetric IoU and the Chamfer-L;.

Volumetric IoU is defined as the quotient of the volume of the intersection of the target Si,qe¢and the predicted Spreq
mesh and the volume of their union. We obtain unbiased estimates of the volume of the intersection and the union by
randomly sampling 100k points from the bounding volume and determining if the points lie inside or outside the target /
predicted mesh,

IOU(Spred7 Starget) =

| V(Spred N Starget) (3)

| V(Sp'r'ed U Starget)

where V(.) is a function that computes the volume of a mesh.

We obtain an unbiased estimator of the Chamfer-L; distance by sampling 100k points on the surface of the target Siqrget
and the predicted Sp,cq mesh. We denote X = {x;}}¥; the set of points sampled on the surface of the target mesh and
Y = {yi} Y, the set of points sampled on the surface of the predicted mesh. We compute the Chamfer-L; as follows:

1 ) 1 .

Dchamfer(X>y) = N Z y?élély Hxi - YjH + N Z )Z?Gu)l( Hyz - Xj” 4
X, €EX yieUY

The first term of (4) measures the completeness of the predicted shape, namely how far is on average the closest predicted

point from a ground-truth point. The second term measures the accuracy of the predicted shape, namely how far on average

is the closest ground-truth point from a predicted point.

To ensure a fair comparison with our baselines, we use the evaluation code of [10] for the estimation of both the Volumetric
IoU and the Chamfer-1L.

2.5. Empirical Analysis of Loss Formulation

In this section, we investigate the impact of how various components of our model affect the performance on the single-
image 3D reconstruction task.

2.5.1 Impact of Sampling Strategy

We first discuss how the sampling strategy affects the performance of our model. Towards this goal, we evaluate our model
on the single-view 3D reconstruction task using three different sampling strategies: (a) uniform sampling in the bounding
box that contains the target object (b) biased sampling (namely sampling an equal number of points inside and outside the
target mesh without reweighing) and (c) unbiased importance sampling as described in Section 2.3. All models are trained on



IoU  Chamfer-L4

Uniform 0.383 0.073
Biased 0.351 0.041
Importance  0.491 0.073

(a) Influence of sampling strategy
IoU  Chamfer-1,
Importance 2k 0.370 0.074

Importance Sk~ 0.380 0.076
Importance 10k 0.491 0.073

(b) Influence of number of sampled points.

Table 1: Sampling Strategy. We evaluate the performance of our model while varying the sampling scheme and the number
of the sampled points inside the bounding box of the target mesh. We report the volumetric IoU (higher is better) and the
Chamfer distance (lower is better) on the test set of the “’chair category”.

the ”chair” object category of ShapeNet using the same network architecture, the same number of sampled points (/N =10k)
and the same maximum number of primitives (D = 16). The quantitative results on the test set of the ’chair” category are
shown in Table 1. We observe that the proposed importance sampling strategy achieves the best results in terms of IoU.

Furthermore, we also examine the impact of the number of sampled points on the performance of our model. In particular,
we train our model on the “chair” category while varying the number of sampled points inside the bounding box that contains
the target mesh. As expected, increasing the number of sampled points results in an improvement in reconstruction quality.
We empirically found that sampling 10k points results in the best compromise between training time and reconstruction
performance.

2.5.2 Impact of Proximity loss

In this section, we explain empirically the vanishing gradient problem that emerges from the use of the sigmoid in the
occupancy function of (2). To this end, we train two variants of our model, one with and without the proximity loss of Eq.
15, in our main submission. For this experiment, we train both variants on D-FAUST for the single image 3D reconstruction
task. Both models are trained for a maximum number of 32 primitives and s = 10 and for the same number of iterations.

SRR

(a) Input (b) without (¢) Ours (d) Input (e) without (f) Ours

Figure 8: Vanishing gradients. We visualize the predictions of two two models, one trained with (Ours) and one without
the proximity loss term. On the left, we visualize the input RGB image (a, d), in the middle the predictions without the
proximity loss (b,c) and on the right the predictions of our model with this additional loss term.



IoU  Chamfer-1,

Ours w/o proximity loss  0.605 0.171
Ours 0.699 0.098

Table 2: Proximity loss. We investigate the impact of the proximity loss. We report the volumetric IoU and the Chamfer
distance for two variants of our model, one with and without the proximity loss term.

Fig. 8 illustrates the predictions of both variants. We remark that the predictions of the model that was trained without the
proximity loss are less accurate. Note that due to the vanishing gradient problem, the network is not able to properly “move”
primitives and as a result, instead of reconstructing the hands of the humans using two or four primitives, the network uses
only one. Interestingly, the reconstructions in some cases e.g. (¢) do not even capture the human shape properly. However,
even though the reconstruction quality is bad, the network is not able to fix it because the gradients of the reconstruction loss
are small (even though the reconstruction loss itself is high). This is also validated quantitatively, as can be observed from
Table 2.



3. Additional Results on ShapeNet

In this section, we provide additional qualitative results on various object types from the ShapeNet dataset [2]. Fur-
thermore, we also demonstrate the ability of our model to predict semantic hierarchies, where the same node is used for
representing the same part of the object. We compare our model qualitatively with [11]. In particular, we train both models
on the single-view 3D reconstruction task, using the same image renderings and train/test splits as [3]. Both methods are
trained for a maximum number of 64 primitives. For our method, we empirically observed that a sharpness value s = 10 led
to good reconstructions. Note that we do not compare qualitatively with [4, 6] as they do not provide code. Finally, we also
compare our model with [1 1, 12] on the volumetric reconstruction task, where the input to all networks is a binary voxel grid.
For a fair comparison, all models leverage the same feature encoder architecture proposed in [11].

In Fig. 10+11, we qualitatively compare our predictions with [ 1] for various ShapeNet objects. We observe that our
model yields more accurate reconstructions compared to our baseline. Due to the use of the reconstruction quality qg, our
model dynamically decides whether a node should be split or not. For example, our model represents the phone in Fig. 10
(a) using one primitive (root node) and the phone in Fig. 10 (b), that consists of two parts, with two primitives. This can be
also noted for the case of the displays Fig. 10 (g+j). For more complicated objects, such as aeroplanes, tables and chairs, our
network uses more primitives to accurately capture the geometry of the target object. Note that for this experiment we set the
threshold for q,‘j to 0.8.

Our network associates the same node with the same part of the object, as it can be seen from the predicted hierarchies in
Fig. 10+11. For example, for the displays the second primitive at the first depth level is used for representing the monitor
of the display, for the aeroplanes the 4-th primitive in the second depth level is used for representing the front part of the
aeroplanes.

3.1. Volumetric Reconstruction

Our model is closely related to the works of Tulsiani et al. [12] and Paschalidou et al. [11]. Both [1 1, 12] were originally
introduced using a binary occupancy grid as an input to their model, thus we also compare our model with [11, 2] using
a voxelized input of size 32 x 32 x 32. We evaluate the modelling accuracy of these three methods on the animal class of
the ShapeNet dataset. To ensure a fair comparison, we use the feature encoder proposed in [12] for all three. A qualitative
evaluation is provided in Fig. 9.

Our model yields more detailed reconstructions compared to [1 1, 12]. For example, in our reconstructions the legs of the
animals are not connected and the tails better capture the geometry of the target shape. Again, we observe that our network
predicts semantic hierarchies, where the same node is used for representing the same part of the animal.
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Figure 9: Volumetric Reconstruction. We note that our reconstructions are geometrically more accurate. In contrast to [11],
our model yields reconstructions where the legs of the animals are not connected. Furthermore, our model accurately captures
the ears and tails of the different animals.

4. Additional Results on D-FAUST

In this section, we provide additional qualitative results on the D-FAUST dataset [1]. Furthermore, we also demonstrate
that the learned hierarchies are indeed semantic as the same node is used to represent the same part of the human body.
Similar to the experiment of Section 4.2 in our main submission, we evaluate our model on the single-view 3D reconstruction
task, namely given a single RGB image as an input, our network predicts its geometry as a tree of primitives as an output.
We compare our model with [11]. Both methods were trained for a maximum number of 32 primitives until convergence.
For our method, we set the sharpness value s = 10.

In Fig. 12+ 14, we qualitatively compare our predictions with [ | 1]. We remark that even though [ 1] is more parsimonious,
our predictions are more accurate. For example, we note that our shape reconstructions capture the details of the muscles
of the legs that are not captured in [ 1]. For completeness, we also visualize the predicted hierarchy up to the fourth depth
level. Another interesting aspect of our model, which is also observed in [1 1, 12] is related to the semanticness of the learned
hierarchies. We note that our model consistently uses the same node for representing the same part of the human body. For
instance, node (4, 15), namely the 15-th node at the 4-th depth level, consistently represents the right foot, whereas, node
(4,12) represents the left foot. This is better illustrated in Fig. 13. In this figure, we only color the primitive associated with
a particular node, for various humans, and we remark that the same primitive is used for representing the same body part.
Finally, another interesting characteristic of our model is related to its ability to use less primitives for reconstructing humans,
with smaller bodies. In particular, while the lower part of the human body is consistently represented with the same set of
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Figure 10: Single Image 3D Reconstruction on ShapeNet. We visualize the predictions of our model on various ShapeNet
objects and compare to [| |]. For objects that are represented with more than two primitives, we also visualize the predicted

hierarchy.

primitives, the upper part can be represented with less depending on the size and the articulation of the human body. This is

illustrated in Fig. 14, where we visualize the predictions of our model for such scenarios.
Below, we provide the full hierarchies of the results on D-FAUST from our main submission.
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Figure 11: Single Image 3D Reconstruction on ShapeNet. We visualize the predictions of our model on various ShapeNet
objects and compare to [| |]. For objects that are represented with more than two primitives, we also visualize the predicted
hierarchy.
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Figure 12: Qualitative Results on D-FAUST. Our network learns semantic mappings of body parts across different body
shapes and articulations while being geometrical more accurate compared to [11].



(a) Node (4, 0)

T

(b) Node (3, 3)

T

(c) Node (4, 3)

=r = =Xy =¥

(d) Node (4, 12)

Figure 13: Semantic Predictions on D-FAUST. To illustrate that our model indeed learns semantic hierarchical layouts of
parts, here we color a specific node of the tree for various humans and we observe that it consistently corresponds to the same
body part.
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Figure 14: Qualitative Results on D-FAUST. Our network learns semantic mappings of body parts across different body
shapes and articulations. Note that the network predicts less primitives for modelling the upper part of the human body.
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Figure 15: Full hierarchies of Figure 6 in our main submission. Please zoom-in for details
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Figure 16: Full hierarchies of Figure 8 in our main submission. Please zoom-in for details.
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