
A. Network Architecture
The proposed SAINT consists of AMI and RFN. For

AMI, the model architecture for the feature learning stage
is described in Section 4 and in [27] with more details. The
model architecture for AMI’s filter generation stage is pre-
sented in Table 3. Nc denotes the number of output chan-
nels, C ′ denotes the channel dimension of generated fea-
tures FLR. We use ‘K#-C#-S#-P#’ to denote the config-
uration of the convolution layers, where ‘K’, ‘C’, ‘S’ and
‘P’ stand for the kernel, channel, stride and padding size,
respectively.

Name Nc Description
INPUT 1 Input FDM
CONV0 32 K3-C1-S1-P1
RELU
CONV1 64 K3-C64-S1-P1
RELU
CONV2 64 K3-C64-S1-P1
RELU
CONV3 64 K3-C64-S1-P1
RELU
CONV4 C ′ K3-C64-S1-P1

Table 3: Network architecture of AMI’s filter generation
stage.

For RFN, we use RDN with five RDBs, four convolu-
tional layers per RDB, and growth rate of sixteen. Ad-
ditionally, for the first convolutional layer, RFN outputs
thirty-two channels instead of sixty-four, which is the de-
fault hyperparameter in RDN and is used in AMI’s model
construction. The upsampling module is a single convolu-
tional layer, since the input and output have the same image
height and width. We find that expanding RFN’s depth or
width does not show improvement to the slice interpolation
results quantitatively.

B. Stitching Artifacts
Due to the high memory consumption of 3D volumetric

data, CT volumes cannot be directly inferred through deep
3D CNN networks. In Section 4 we infer and compare only
the central 256×256×Z patch for all non-SAINT methods
to reduce the memory requirement, with the exception of
mDCSRN, which are inferred by the patch-based algorithm
discussed in [4].

When an entire 3D volume needs to be super-resolved,
all competing 3D CNN models need to use some form of
patch-based algorithm that divides CT volumes into indi-
vidual cubes to be inferred independently. However, such
an approach introduces artifacts at the fringe, where the
divided cubes are put back together. This is due to SISR

Figure 8: The stitching artifacts, following the procedure
described in [4] with three voxel margin.

models heavily employing padding4 to keep the same di-
mensionality throughout convolutions, i.e. for every convo-
lutional layer with a filter size of k, the input tensor needs
to be padded by bk2 c for the output tensor to retain the same
shape. For our implementation of the 3D RDN, there are
fifty-two convolutional layers, which means the original in-
put is padded by fifty-two voxels on each side, resulting
in an overall padding size of 104 × 104 × 104. Such a
large padding size distorts the real data distribution, and ad-
versely affects voxel prediction accuracy, especially at the
fringe, of the divided cues. As a result, when the cubes
are reassembled together to form the super-resolved vol-
ume, the boundaries between them are often inconsistent.
We refer to the artifact caused by this inconsistency as the
stitching artifact.

The patch-based algorithm discussed in [4] attempts to
alleviate this problem by introducing overlaps of three vox-
els between the divided 3D cubes, effectively replacing the
padding of three initial convolution layers with real voxel
values. As we have shown in Fig. 7 and an enlarged ver-
sion in Fig. 8, this still leads to noticeable stitching artifacts
with a deep network. Theoretically, to completely elimi-
nate such artifact for 3D RDN, the input tensor needs to be
padded with at least fifty-two voxels on each side, which
leads back to memory bottleneck and inefficiency. In com-
parison, since SAINT breaks down 3D SISR into separate
stages of 2D SISR, it completely eliminates stitching arti-
facts, thus also allowing for larger network size to be used.

C. Alternative RFN implementations

In this section, we showed the different implementations
of RFN that we have experimented with.

4zero-padding is used for all models in this paper



Figure 9: The augmented version of Spatially Aware Interpolation NeTwork (SAINT). Instead of using the sagittal and
coronal views, the augmented SAINT also attempts to incorporate alternative views. For visualization purpose, the volumes
are rendered in 3D based on their bone structures.

3D RFN Due to RFN’s lightweight and shallow network
structure, it is memory-wise feasible to employ the patch-
based algorithm for inference with enough margin on each
side to eliminate the stitching artifacts. We implement a 3D
version of RFN, where it uses 3D convolutional filters in-
stead of 2D, to observe if that allows better modelling of the
3D context. As shown in Table 3, we do not see any observ-
able difference quantitatively between 2D and 3D RFN’s
results.

Four Views To axially interpolate a 3D volume, AMI
first upsamples it from the coronal view and sagittal view,
i.e. Iy↓rz (x, z) and Ix↓rz (y, z), and leaves RFN to im-
prove consistency from the axial view Iz(x, y). However,
Iy↓rz (x, z) and Ix↓rz (y, z) are not the only two views in a 3D
volume that can be used to super-resolve the z axis. Tech-
nically, there are infinite number of views that include the
z axis in 3D. To this end, we perform an experiment to see
if axially upsampling volumes from alternative views can
improve performance.

As shown in Fig. 9, we experiment with an augmented

version of SAINT, where AMI upsamples 2D images from
four views, instead of just the sagittal and coronal views.
In addition to (x, z) and (y, z), we define two additional
axes x′ and y′, which are rotated from the x and y axes by
45◦on the (x, y) plane. Following similar procedures de-
scribed in Section 3.1, we sample from volume I↓rz to ob-
tain Ix

′

↓rz (y
′, z) and Iy

′

↓rz (x
′, z), of which we super-resolve

with AMI. The super-resolved slices are reformatted into
3D volumes Icor′(x′, y′, z) and Isag′(x

′, y′, z)5, and are
passed to RFN with Icor and Isag .

For RFN, Iavg is the average of four volumes Isag , Icor,
Isag′ , Icor′ , and Izfuse becomes:

Izfuse(x, y) = Izavg(x, y)

+ Fφ(Izsag(x, y), Izcor(x, y), Izsag′(x, y), Izcor′(x, y)).
(12)

All loss functions and network structures remain the same.
5Icor′ (x

′, y′, z) and Isag′ (x
′, y′, z) can be converted to

Icor′ (x, y, z) and Isag′ (x, y, z) through simple rotation of axes.



Scale PSNR/SSIM Parameters Liver Colon Hepatic Vessels Kidney

x4
AMI+RFN2D

2V iew 2.92M 34.91/0.9603 34.19/0.9579 34.48/0.9630 35.79/0.9597
AMI+RFN3D

2V iew 2.92M 34.84/0.9602 34.21/0.9583 34.50/0.9631 35.44/0.9566
AMI+RFN2D

4V iew 2.92M 34.94/0.9611 34.29/0.9590 34.60/0.9639 35.56/0.9575

x6
AMI+RFN2D

2V iew 2.92M 32.49/0.9395 31.48/0.9321 31.87/0.9404 33.22/0.9393
AMI+RFN3D

2V iew 2.92M 32.36/0.9390 31.51/0.9324 31.87/0.9404 32.92/0.9352
AMI+RFN2D

4V iew 2.92M 32.37/0.93890 31.52/0.9324 31.89/0.9404 32.92/0.9352

Table 4: Quantitative Comparison of different RFN implementations. The superscript on RFN describes whether RFN
is implemented with 2D or 3D filters; the subscript describes whether RFN fuses volumes super-resolved from two views
(sagittal and coronal) or four views (as described in C). The best results are in bold, and the second best results are underlined.

We found that the two additional planes only improve
SAINT performance marginally.

D. Effects of FDM on interpolation results
SAINT generates interpolated slices based on the input

of FDM, which is dependent on the voxel spacing of spe-
cific slices (as shown in Algorithm 1). We believe that the
incorporation of voxel spacing, especially the spacing be-
tween slices Rz , is important, as it is an indication of how
much the details should shift between consecutive slices.

(a) Interpolated Results, Rz = 1mm

(b) Interpolated Results, Rz = 5mm

Figure 10: Visual comparison of slice interpolation (rz =
4) with different voxel spacing input. Notice how the bone
structures change faster for (a) as compared to (b), as the
slices are supposed to be further apart according to the re-
spective Rz .

To visually understand how changing voxel spacing val-
ues impact interpolation results from SAINT, we use AMI
to super-resolve the same CT volume with different values

of Rz , as shown in Fig. 10. We found that through the
formulation of FDM, the interpolated slices produce details
that change more rapidly if Rz is high, and more slowly if
Rz is low.

E. Additional Visual Comparisons on CT im-
ages

Please refer to Fig. 11 and Fig. 12 for more visual com-
parisons of synthesized slices from different methods. To
better demonstrate the results in 3D, sagittal slices are also
included for reference.
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Figure 11: Visual comparisons of different methods against SAINT for rz = 4. The difference maps are provided to the right
of the results for better visualization. Images are best viewed when magnified.
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Figure 12: Visual comparisons of different methods against SAINT for rz = 6. The difference maps are provided to the right
of the results for better visualization. Images are best viewed when magnified.




