Generative-discriminative Feature Representations for Open-set Recognition

Pramuditha Perera*
Johns Hopkins University

Vlad I. Morariu Adobe Research Rajiv Jain Adobe Research Varun Manjunatha Adobe Research

pperera3@jhu.edu

morariu@adobe.com

rajijain@adobe.com

vmanjuna@adobe.com

Curtis Wigington Adobe Research Vicente Ordonez University of Virginia Vishal M. Patel Johns Hopkins University

wigingto@adobe.com

vicente@virginia.edu

vpate136@jhu.edu

α_1	α_2	Accuracy	AUC
0.2	0.8	90.77	88.76
0.4	0.6	91.90	88.44
0.5	0.5	91.75	87.35
0.6	0.4	92.53	89.09
0.8	0.2	92.72	89.85

Table 1. Sensitivity of the algorithm to different hyper-parameters.

1. Impact of hyper-parameters

The proposed method optimizes a deep network with the objective of minimizing the loss $l_t = \alpha_1 l_c + \alpha_2 l_{ss}$. We carried out a study investigating performance of the proposed method for different values of α_1 and α_2 . For this study, we used animal classes of CIFAR10 as known classes and considered remaining classes as open-set classes. It should be noted that this known-openset class split is different from all splits considered in the CIFAR10 experiment in the main paper. Parameters α_1 and α_2 were changed into different combinations between 0.2-0.8 and performance of the system was analyzed. Seed was fixed in all these experiments to make sure comparisons are fair. In Table 1, closed-set classification accuracy and open-set detection performance(in AUC of ROC curve) are tabulated.

According to Table 1, AUC doesn't vary a lot for different combinations of α_1 and α_2 . However, the highest performance is obtained when $\alpha_1=0.8$ and $\alpha_2=0.2$. General trend in Table 1 suggests that a better performance is obtained when a lower weight is assigned to the self-supervision loss. On the other hand, as shown in the ablation study of the main paper, removing self-supervision loss reduces open-set recognition performance. Based on these observations, we set hyper-parameters $\alpha_1=0.8$ and $\alpha_2=0.2$ for all experiments.

^{*}This work was completed while the author was working as an intern at Adobe Research