
Supplementary – Embodied Language Grounding with 3D Visual Feature
Representations

Mihir Prabhudesai∗, Hsiao-Yu Fish Tung∗, Syed Ashar Javed∗,
Maximilian Sieb†, Adam W. Harley, Katerina Fragkiadaki

{mprabhud, htung,sajaved,msieb,aharley,katef}@cs.cmu.edu
Carnegie Mellon University

Project website: https://mihirp1998.github.io/project pages/emblang/

1. Model details: Language-conditioned 3D vi-
sual imagination

We train our stochastic generative networks using con-
ditional variational autoencoders. For the what generative
module, our inference network conditions on the word em-
beddings of the adjectives and the noun in the noun phrase,
as well as the 3D feature tensor obtained by cropping the
3D feature map M = GRNN(I) using the ground-truth 3D
bounding box of the object the noun phrase concerns. For
the where generative module, the corresponding inference
network conditions on one-hot encoding of the spatial ex-
pression, as well as the 3D relative spatial offset, available
from 3D object box annotations. Inference networks are
used only at training time. Our what and where decoders
take the posterior noise and predict 3D object appearance
feature tensors, and cross-object 3D spatial offsets, respec-
tively, for each object. We add predicted object feature
tensors at predicted 3D locations in a 3D feature canvas.
Our reconstruction losses ask the language-generated and
image-inferred 3D feature maps from GRNNs to be close
in feature distance, both in 3D and after 2D neural projec-
tion using the GRNN 3D-to-2D neural decoder, and the pre-
dicted cross-object 3D relative spatial offsets to be close to
the ground-truth cross-object 3D relative offsets.

2. Experimental details: Language condi-
tioned scene generation

We visualize our model’s predictions in two ways: i)
neurally rendered are obtained by feeding the generated
3D assembled canvas to the 3D-to-2D neural projection
module of GRNNs, ii) Blender rendered are renderings
of Blender scenes that contain object 3D meshes selected
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by small feature distance to the language generated object
3D feature tensors, and arranged based on the predicted 3D
spatial offsets.

We consider a database of 300 object 3D meshes to
choose from. To get the object feature tensor for a candi-
date 3D object model, we render multi-view RGB-D data
of this object in Blender, and input them to the GRNN to
obtain the corresponding feature map, which we crop using
the groundtruth bounding box. Blender renders better con-
vey object appearance because the neurally rendered images
are blurry. Despite pixel images being blurry, our model
retrieves correct object meshes that match the language de-
scriptions.

3. Additional experiments

Scene generation conditioned on natural language In
Figure 1, we compare our model with the model of Deng
et al (5) on language to scene generation with utterances
longer than those used during training time. We show both
neural and Blender rendering of scenes predicted from our
model. We remind the reader that a Blender rendering is
computed by using the cross-object relative 3D offsets pre-
dicted by our model, and using the generated object 3D fea-
ture tensors to retrieve the closest matching meshes from
a training set. Our training set is comprised of 100 objects
with known 3D bounding boxes, and for each we compute a
3D feature tensor by using the 2D-to-3D unprojection mod-
ule described above, and cropping the corresponding sub-
tensor based on the 3D bounding box coordinates of the ob-
ject. Despite our neural rendering being blurry, we show the
features of our generative networks achieve correct nearest
neighbor retrieval. The generation results show our model
can generalize to utterances that are much longer than those
in the training data. In Figure 2, we show rendering results
from our model on our real world dataset.
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One key feature of our model is that it generates a scene
as opposed to an independent static image. In Figure 3, we
show rendering images from the 3D feature tensor across
different viewpoints. The rendering images are consistent
across viewpoints. For a 2D baseline (5), it is unclear how
we can obtain a set of images that not only match with input
sentence but also are consistent with each others.

We show in Figures 4-5 more neural and Blender ren-
dering of scenes predicted from our model, conditioning on
parse trees of natural language utterances. In 6, we show
rendering results learned from our real world dataset.

Scene generation conditional on natural language and
visual context In Figures 7-9 we show examples of scene
generation from our model when conditioned on both nat-
ural language and the visual context of the agent. In this
case, some objects mentioned in the natural language ut-
terance are present in the agent’s environment, and some
are not. Our model uses a 3D object detector to localize
objects in the scene, and the learnt 2D-to-3D unprojection
neural module to compute a 3D feature tensor for each, by
cropping the scene tensor around each object. Then, it com-
pares the object tensors generated from natural language to
those generated from the image, and if a feature distance
is below a threshold, it grounds the object reference in the
parse tree of the utterance to object present in the environ-
ment of the agent. If such binding occurs, as is the case for
the “green cube” in the top left example, then our model
uses the image-generated tensors of the binded objects, in-
stead of the natural language generated ones, to complete
the imagination. In this way, our model grounds natural
language to both perception and imagination.

Affordability inference based on 3D non-intersection
Objects do not intersect in 3D. Our model has a 3D feature
generation space and can detect when this basic principle
is violated. The baseline model of (5) directly generates
2D images described in the utterances (conditioned on their
parse tree) without an intermediate 3D feature space. Thus,
it performs such affordability checks in 2D. However, in
2D, objects frequently occlude one another, while they still
correspond to an affordable scene. In Figure 10, we show
intersection over union scores computed in 3D by our model
and in 2D by the baseline. While for our model such scores
correlate with affordabilty of the scene (e.g., the scenes in
1st, third, and forth columns in the first row are clearly non-
affordable as objects inter-penetrate) the same score from
the baseline is not an indicator of affordability, e.g., the last
column in the last row of the figure can in fact be a perfectly
valid scene, despite the large IoU score.

Language-guided placement policy learning In Figure
11, we show the initial and final configurations of the

learned policy using different referential expression. The
robot can successfully place the object to the target loca-
tion given the referential expression. We also show in the
supplementary a video of a real robot executing the task.

4. Additional related work

The inspiring experiments of Glenberg and Robertson
(10) in 1989 demonstrated that humans can easily judge the
plausibility —they called it affordability—of natural lan-
guage utterances, such as “he used a newspaper to protect
his face from the wind”, and the implausibility of others,
such as “he used a matchbox to protect his face from the
wind”. They suggest that humans associate words with ac-
tual objects in the environment or prototypes in their imag-
ination that retain perceptual properties—how the objects
look—and affordance information (8)—how the objects can
be used. A natural language utterance is then understood
through perceptual and motor simulations of explicitly and
implicitly mentioned nouns and verbs, in some level of ab-
straction, that encode such affordances. For example, the
matchbox is too small to protect a human face from the
wind, while a newspaper is both liftable by a human and
can effectively cover a face when held appropriately. This
hypothesis is currently better known as simulation seman-
tics (6; 7; 2; 4) and has extensive empirical support: reaction
times for visual or motor operations are shorter when human
subjects are shown a related sentence (9; 3), and MRI activ-
ity is increased in the brain’s vision system or motor areas
when human subjects are shown vision- or motor-related
linguistic concepts, respectively (1; 11; 12). This paper pro-
poses an initial computational model for the simulation se-
mantics hypothesis for the language domain of object spa-
tial arrangements.
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Figure 1: Language to scene generation from our model (Row1, Row2) and the model of Deng et al (5) (Row 3, 4) for
utterances longer than those encountered at training time. Both our model and the baseline are stochastic, and we sample
three generated scenes/images per utterance. (Row 1 and Row 2) shows neural and Blender rendering results from our model.
For the Blender rendering, we retrieve the closet 3D object mesh using the features of our generative networks, and place the
retrieved objects in the corresponding locations in Blender to render an image. (Row 3) shows image generation results with
no IoU constraint during sampling for the baseline. This means objects might go out of the field of view. (Row 4) shows
result with high IoU constraint.



Baseline 
(No IOU Filter) 

Baseline 
(High IOU Filter)

“cyan sphere to the right of red cylinder”

Sample 1 Sample 2 Sample 3

Natural 
 language 
utterance

Ours 
(Neural 

Renders) 

Ours 
(Blender 
Renders) 

Natural 
 language 
utterance

Baseline 
(No IOU Filter) 

Ours 
(Neural 

Renders) 

Ours 
(Blender 
Renders) 

“red cylinder to the right of yellow sphere to 
the left-front of green sphere to the right of 

blue sphere to the left-front of yellow sphere”

Sample 1 Sample 2 Sample 3

“green cylinder to the left behind of red sphere to 
the right behind of blue sphere”

Sample 1 Sample 2 Sample 3

Sample 1 Sample 2 Sample 3

“blue sphere to the right of brown sphere to the 
left front of yellow sphere to the right of red 

cylinder”

Natural 
 language 
utterance

“yellow lemon to the behind of pomegranate to 
the left front of pear to the front of toy truck”

“tomato to the front of avocado to the left of 
yellow lemon to the behind of  pomegranate”

Ours 
(Neural 

Renders) 

Natural 
 language 
utterance

“banana to the behind of red apple to the left 
of green grapes”

“orange to the front of banana to the left behind 
of red apple”

Ours 
(Neural 

Renders) 

Baseline 
(High IOU Filter)

Figure 2: Language to image generation on our real world data. We sample three different scenes for each natural language
utterances.
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Figure 3: Consistent scene generation . We render the generated 3D feature canvas from various viewpoints in the first row
using the neural GRNN decoder, and compare against the different viewpoint projected Blender rendered scenes. Indeed, our
model correctly predicts occlusions and visibilities of objects from various viewpoints, and can generalize across different
number of objects. 2D baselines do not have such imagination capability.
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Figure 4: Natural language conditioned neural and blender scene renderings generated by the proposed model. We
visualize each scene from two nearby views, a unique ability of our model, due to its 3-dimensional generation space.
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Figure 5: (Additional) Natural language conditioned neural and blender scene renderings generated by the proposed
model.
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Figure 6: (Additional) Natural language conditioned neural scene renderings generated by the proposed model over
our real world dataset.
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Figure 7: Neural and blender scene renderings generated by the proposed model, conditioned on natural language and
the visual scene. Our model uses a 3D object detector to localize objects in the scene, and the learnt 2D-to-3D unprojection
neural module to compute a 3D feature tensor for each, by cropping accordingly the scene tensor. Then, it compares the
natural language conditioned generated object tensors to those obtained from the image, and grounds objects references in
the parse tree of the utterance to objects presents in the environment of the agent, if the feature distance is below a threshold.
If such binding occurs, as is the case for the “green cube” in top left, then, our model used the image-generated tensors of the
binded objects, instead of the natural language generated ones, to complete the imagination. In this way, our model grounds
natural language to both perception and imagination.



“green cylinder to the right front 
of yellow sphere”

“purple sphere to the left front of 
green sphere”

Natural 
 language 
utterance

Neural 
render

Blender 
render

“red cylinder to the right front of 
brown cylinder”

“red sphere to the right behind 
of blue sphere”

“red cylinder to the left of yellow 
cylinder”

“purple sphere to the right 
front of gray cylinder”

Neural 
render

Blender 
render

Neural 
render

Blender 
render

Conditioned 
Image

Generated 
Image

Natural 
 language 
utterance

Natural 
 language 
utterance

Conditioned 
Image

Generated 
Image

Figure 8: (Additional) Neural and blender scene renderings generated by the proposed model, conditioned on natural
language and the visual scene.
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Figure 9: (Additional) Neural scene renderings generated by the proposed model, conditioned on natural language
and the visual scene from our real world dataset.
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Figure 10: Affordability prediction comparison of our model with the baseline work of (5). In the top 2 rows, we
show the Neural and Blender renderings of our model. Since we reason about the scene in 3D, our model allows checks
for expression affordability by computing the 3D intersection-over-union (IoU) scores. In contrast, the bottom row shows
the baseline model which operates in 2D latent space and hence cannot differentiate between 2D occlusions and overlapping
objects in 3D.

Figure 11: Language-guided placement policy learning. We show the final configurations of the learned policy using
different referential expressions for the utterance ”Place red cube {referential expression} of green bowl.” Top: Initial robot
configuration with the goal position generated by our method indicated as a blue dot. Bottom: Final robot configuration. We
can see that the robot successfully places the cube with respect to the bowl according to the given referential expression.


