
ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes
Supplmentary Material

Charles R. Qi∗† Xinlei Chen∗1 Or Litany1,2 Leonidas J. Guibas1,2
1Facebook AI 2Stanford University

A. Overview
In this supplementary, we provide more details on the

IMVOTENET architecture in Sec. B, including point cloud
network architecture, 2D detector, 2D votes and image
votes lifting. We also show visualizations of the sparse point
clouds in Sec. C.

B. Details on IMVOTENET Architecture
In this section, we explain the details in the IMVOTENET

architecture. Sec. B.1 provides details in the point cloud
deep net as well as the training procedure. Further details on
the 2D detector and 2D votes are described in Sec. B.2 while
details on lifting 2D votes with general camera parameters
are described in Sec. B.3.

B.1. Point Cloud Network

Input and data augmentation. The point cloud backbone
network takes a randomly sampled point cloud of a SUN
RGB-D [8] depth image with 20k points. Each point has
its XY Z coordinate as well as its height (distance to floor).
The floor height is estimated as the 1% percentile of heights
of the all points. Similar to [4], we augment the input point
cloud by randomly sub-sampling the points from the depth
image points on-the-fly. Points are also randomly flipped in
both horizontal directions and randomly rotated along the
up-axis by Uniform[-30,30] degrees. Points are also ran-
domly scaled by Uniform[-.85, 1.15]. Note that the point
height and the camera extrinsic are updated accordingly
with the augmentation.

Network architecture. We adopt the same PointNet++ [5]
backbone network as that in [4] with four set abstraction
(SA) layers and two feature propagation/upsamplng (FP)
layers. With input of N×4 where N=20k, the output of
the backbone network is a set of seed points of K×(3+C)
where K=1024 and C=256.

*: equal contributions.
†: work done while at Facebook.

As for voting, different from VOTENET that directly
predicts votes from the seed points, here we fuse lifted im-
age votes and the seed points before voting. As each seed
point can fall into multiple 2D detection boxes, we dupli-
cate a seed point q times if it falls in q overlapping boxes.
Each duplicated seed point has its feature augmented with a
concatenation of the following image vote features: 5-dim
lifted geometric cues (2 for the vote and 3 for the ray angle),
10-dim (per-class) semantic cues and 3-dim texture cues. In
the end the fused seed point has 3-dim XY Z coordinate and
a 274-dim feature vector.

The voting layer takes the seed point and maps its fea-
tures to votes through a multi-layer perceptron (MLP) with
FC output sizes of 256, 256 and 259, where the last FC
layer outputs XYZ offset and feature residuals (with re-
gard to the 256-dim seed feature) for the votes. As in [4],
the proposal module is another set abstraction layer that
takes in the generated votes and generate proposals of shape
K ′×(5+2NH+4NS+NC) where K ′ is the number of to-
tal duplicated seed points and the output dimension consists
of 2 objectness scores, 3 center regression values, 2NH
numbers for heading regression (NH heading bins) and
4NS numbers for box size regression (NS box anchors)
and NC numbers for semantic classification.

Training procedure. We pre-train the 2D detector as de-
scribed more in Sec. B.2 and use the extracted image votes
as extra input to the point cloud network. We train the point
cloud deep net with the Adam optimizer with batch size 8
and an initial learning rate of 0.001. The learning rate is de-
cayed by 10× after 80 epochs and then decayed by another
10× after 120 epochs. Finally, the training stops at 140
epochs as we find further training does not improve perfor-
mance.

B.2. 2D Detector and 2D Cues

2D detector training. While IMVOTENET can work with
any 2D detector, in this paper we choose Faster R-CNN [6],
which is the current dominant framework for bounding box
detection in RGB. The detector we used has a basic ResNet-
50 [1] backbone with Feature Pyramid Networks (FPN) [2]
constructed as {P2, P3, . . . , P6}. It is pre-trained on the

1

COCO train2017 dataset [3] achieving a val2017 AP of
41.0. To adapt the COCO detector to the specific dataset for
2D detection, we further fine-tune the model using ground
truth 2D boxes from the training set of SUN-RGBD before
applying the model only using the color channels. The fine-
tuning lasts for 4K iterations, with the learning rate reduced
by 10× at 3K-th iteration starting from 0.01. The batch size,
weight decay, and momentum are set as 8, 1e-4, and 0.9, re-
spectively. Two data augmentation techniques are used: 1)
standard left-right flipping; and 2) scale augmentation by
randomly sample the shorter side of the input image from
[480,600]. The resulting detector achieves a mAP (at over-
lap 0.5) of 58.5 on val set.

Note that we specifically choose not to use the most ad-
vanced 2D detectors (e.g. based on ResNet-152 [1]) just for
the sake of performance improvement. As our experimen-
tal results shown in the main paper, even with this simple
baseline Faster R-CNN, we can already see significant boost
thanks to the design of IMVOTENET.

2D boxes. To infer 2D boxes using the detector, we first
resize the input image to a shorter side of 600 before feed-
ing into the model. Then top 100 detection boxes across all
classes for an image is aggregated. We further reduce the
number of 2D boxes per image by filtering out any detec-
tion with a confidence score below 0.1. Two things to note
about the 2D boxes used while training IMVOTENET: 1)
we could also train with ground truth 2D boxes, however
we empirically found that including them for training hurts
performance, likely due to the different detection statistics
at test time; 2) as the pre-training for the 2D detector is also
performed on the same training set, it generally gives bet-
ter detection results on SUN RGB-D train set images, to
reduce the effect of over-fitting, we randomly dropped 2D
boxes with a probability of 0.5.

Alternative semantic cues. Other than the default seman-
tic cue to represent each 2D box region as the one-hot classi-
fication score vector (the detected class has the value of the
confidence score from the detector, all other locations have
zeros), we further experimented with dense RoI features
extracted from that region. Two variants are reported in the
paper, with the 1024-dim one being the output from the last
FC layer before region classification and regression. For the
64-dim one, we insert an additional FC layer before the fi-
nal output layers so that region information is compressed
into the 64-dim vector. The added layer is pre-trained with
the 2D detector (resulting in a val mAP of 57.9) and fixed
when training IMVOTENET.

Alternative texture cues. The default texture cue is the
raw RGB values (normalized to [-1,1]). Besides this sim-
ple texture cue, we also experimented more advanced per-
pixel features. One handy feature that preserves such spatial

O Zupright

Yupright

C

P

C’

Zcamera

C’’
Ycamera

Figure 1. Image vote lifting with camera extrinsic. Here we
show surface point P and object center C in two coordinate sys-
tems: camera coordinate and upright coordinate (OY is along
gravitational direction).

»
PC is the true 3D vote.

»

PC′ is the pseudo
vote as calculated in the main paper and

»

PC′′ is the transformed
pseudo vote finally used in feature fusion.

information is the feature maps Pk from FPN that fuse top-
down and lateral connections [2]. Here k is the index to the
layers in the feature pyramid, which also designates the fea-
ture strides and size. For example, P2 has a stride of 22=4
for both height and width; and a spatial size of roughly 1/16
of the input image1. For P3 the strides are 23=8. All feature
maps have a channel size of 256, which becomes the input
dimension when used as texture cues for IMVOTENET.

B.3. Image Votes Lifting

In the main paper we derived the lifting process to trans-
form a 2D image vote to a 3D pseudo vote without consid-
ering the camera extrinsic. As the point cloud sampled from
depth image points is transformed to the upright coordinate
before feeding to the point cloud network (through camera
extrinsic R as a rotational matrix), the 3D pseudo vote also
needs to be transformed to the same coordinate.

Fig. 1 shows the surface point P , object center C and the
end point of the pseudo vote C ′. Since the point cloud is in
the upright coordinate, the point cloud deep net can only es-
timate the depth displacement of P and C along the Zupright
direction (it cannot estimate the depth displacement along
the Zcamera direction as the rotational angles from camera to
upright coordinate are unknown to the network). Therefore,
we need to calculate a new pseudo vote

»

PC ′′ where C ′′ is
on the ray OC and PC ′′ is perpendicular to the OZupright.

To calculate the C ′′ we need to firstly transform P and
C ′ to the upright coordinate. Then assume P=(xp, yp, zp)
and C ′=(xc′ , yc′ , zc′) in the upright coordinate, we can
compute:

C ′′ = (zp
xc′

zc′
, zp

yc′

yc′
, zp). (1)

1Note that different from 2D box detection, we feed the images directly
to the model without resizing to shorter-side 600 to compute FPN features.

2

point cloud settings images from SUN RGB-D [8] train set
sampling
method # points 1 2 3

random
uniform

20k

5k

1k

ORB [7]
5k

1k

Table 1. Sparse point cloud visualization. We show projected point clouds on three SUN RGB-D images and compare point density and
distribution among random sampling (to 20k, 5k and 1k points) and ORB key points based sampling (to 5k and 1k points). For ORB key
point sampling, we firstly detect ORB key points in the RGB images with an ORB key point detector and then keep 3D points that are
projected near those key points. Best viewed in color with zoom in.

C. Visualization of Sparse Points

In the Sec. 4.4 of the main paper we showed how image
information and IMVOTENET model can be specially help-
ful in detections with sparse point clouds. Here in Table. 1
we visualize the sampled sparse point clouds on three exam-
ple SUN RGB-D images. We project the sampled points to

the RGB images to show their distribution and density. We
see that the 20k points in the first row have a dense and uni-
form coverage of the entire scene. After randomly subsam-
pling the points to 5k and 1k points in the second and third
rows respectively, we see the coverage is much more sparse
but still uniform. In contrast the ORB key point based sam-
pling (the last two rows) results in very uneven distribu-

3

tion of points where they are clustered around corners and
edges. The non-uniformity and low coverage of ORB key
points makes it especially difficult to recognize objects in
point cloud only. That’s also where our IMVOTENET model
showed the most significant improvement upon VOTENET.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, 2016.
1, 2

[2] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid net-
works for object detection. In CVPR, 2017. 1, 2

[3] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 2

[4] Charles R. Qi, Or Litany, Kaiming He, and Leonidas J.
Guibas. Deep hough voting for 3d object detection in point
clouds. 2019. 1

[5] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413, 2017. 1

[6] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with region
proposal networks. In NeurIPS, 2015. 1

[7] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R
Bradski. Orb: An efficient alternative to sift or surf. In ICCV,
2011. 3

[8] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun
rgb-d: A rgb-d scene understanding benchmark suite. In
CVPR, 2015. 1, 3

4

