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1. Gradient of DR Loss

We have the DR loss as

min
θ
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It looks complicated but its gradient is easy to compute.
Here we give the detailed gradient. For pi,j− , we have
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where z = P̂− − P̂+ + γ.
For pi,j+ , we have
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2. Proof of Theorem 1
Proof. First, we give the definition of smoothness

Definition 1. A function F is called µ-smoothness w.r.t. a
norm ‖ · ‖ if there is a constant µ such that for any θ and θ′,
it holds that

F (θ′) ≤ F (θ) + 〈∇F (θ), θ′ − θ〉+ µ

2
‖θ′ − θ‖2

We assume that the loss in Eqn. 9 is µ-smoothness, then
we have

E[L(θt+1)] ≤ E[L(θt) + 〈∇L(θt), θt+1 − θt〉

+
µ

2
‖θt+1 − θt‖2F ]

= E[L(θt) + 〈∇L(θt),−
η
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According to the definition, we have

∀s, E[∇`st ] = ∇L(θt)

If we assume that the variance is bounded as

∀s, ‖∇`st −∇Lt‖F ≤ δ

then we have

E[L(θt+1)] ≤ E[L(θt)− η‖∇Lt‖2F

+
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Therefore, we have

(η − µη2

2
)‖∇L(θt)‖2F ≤ E[L(θt)]− E[L(θt+1)] +

µη2δ2
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Focal Loss DR Loss
Threshold AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL
0.05 36.1 55.0 38.7 19.5 39.5 49.0 37.4 56.0 40.0 20.8 41.2 50.5
0.1 36.1 54.9 38.7 19.4 39.4 49.0 37.4 56.0 40.0 20.8 41.2 50.5
0.2 35.4 53.4 38.2 18.3 38.7 48.6 37.4 56.0 40.0 20.8 41.2 50.5
0.3 33.9 50.2 37.0 16.2 37.1 47.6 37.4 56.0 40.0 20.8 41.2 50.5
0.4 31.6 45.8 35.0 14.1 34.4 45.2 37.3 55.9 40.0 20.7 41.2 50.4
0.5 28.4 39.7 31.7 10.5 30.5 42.1 37.2 55.6 39.8 20.1 41.0 50.3

Table 1. Comparison of different thresholds.

Focal Loss [2] DR Loss
scale AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL
400 30.5 47.8 32.7 11.2 33.8 46.1 32.4 49.9 34.5 11.7 34.8 48.0
500 32.5 50.9 34.8 13.9 35.8 46.7 34.5 52.6 36.6 14.7 36.9 48.9
600 34.3 53.2 36.9 16.2 37.4 47.4 36.1 54.6 38.7 17.4 38.5 49.2
700 35.1 54.2 37.7 18.0 39.3 46.4 37.1 55.8 39.7 18.9 39.8 49.2
800 35.7 55.0 38.5 18.9 38.9 46.3 37.6 56.4 40.3 20.1 40.5 48.9

Table 2. Comparison of different input scales. We adopt 1× iterations and ResNet-50 as the backbone in training. Results on the test-dev
are reported.

By assuming η ≤ 1
µ and adding t from 1 to T , we have
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We finish the proof by letting
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3. Additional Experiments

Effect of DR Loss: We illustrate the empirical PDF of
foreground and background from DR loss in Fig. 1. Fig. 1
(a) shows the original density of foreground and back-
ground. To make the results more explicit, we decay the
density of background by a factor of 10 and demonstrate
the result in Fig. 1 (b). It is obvious that DR loss can sepa-
rate the foreground and background with a large margin in
the imbalanced scenario.

(a) Original Density (b) Decayed Density
Figure 1. Illustration of empirical PDF of distributions from DR
loss.

Effect of Large Margin: Before non-maximum suppres-
sion (NMS), the candidates with low confidence will be fil-
tered to accelerate detection. Since the distribution of fore-
ground from focal loss is close to that of background as
illustrated in Fig. 4 of our paper, a small threshold as 0.05
is adopted to eliminate negative examples. The proposed
loss function optimizes the distributions with a large margin
and can be robust to the selection of the threshold. Table 1
demonstrates the performance with different thresholds. It
is obvious that the performance of DR loss keeps almost the
same while that of focal loss degrades significantly when
increasing the threshold.

Effect of Image Scale: We tune the parameters of DR
loss with a single input scale of 800 but the parameters are
robust to different input scales. We follow the settings in
the ablation study and Table 2 compares the performance
on test-dev with scales varied in {400, 500, 600, 700, 800}.
We report the results of focal loss from [2]. Evidently, DR
loss can consistently improve the performance over focal
loss by about 2%. It demonstrates that the proposed loss
function is not sensitive to the scale of input images.

Comparison on PASCAL: Finally, we evaluate the
proposed DR loss on a different data set: PASCAL
VOC2007 [1], which contains 9, 963 images and 20 classes.
We adopt the same configurations for RetinaNet as in the
ablation study and the same parameters as those on COCO
for DR loss and focal loss. We change the initial learning
rate to 0.008 and it is decayed at 6, 250 iterations, where the
total number of iterations is 8, 750 as suggested by the code-
base. Other training settings are the same as the pipeline for



COCO. The detector is trained with the training and vali-
dation sets, and Table 3 shows the comparison on the test
data. We can observe that with the same parameters on a
different task, our method can outperform focal loss with a
significant margin. It demonstrates that the proposed loss
function can be applicable for different tasks.

Loss AP AP50 AP75

Focal 39.5 67.2 40.8
DR 41.2 68.6 42.6

Table 3. Comparison on VOC2007. Results on test are reported.
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