
Supplementary Materials

Yuhui Quan1, Mingqin Chen1, Tongyao Pang2 and Hui Ji2
1School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China

2Department of Mathematics, National University of Singapore, 119076, Singapore
csyhquan@scut.edu.cn, csmingqinchen@mail.scut.edu.cn, matpt@nus.edu.sg and matjh@nus.edu.sg

1. Details on Partial Convolution
Partial convolution [1] is originally designed for inpainting image holes, which allows progressively filling the holes from

the outside to the inside. Let k ∈ RZ be the weights of a convolution kernel and b ∈ R the corresponding bias. Let f ∈ RZ

denote the feature values (pixels values) for the current convolution (sliding) window and m ∈ RZ is the corresponding
binary mask. The partial convolution at every location is expressed as

f ′ = 1[‖m‖1 > 0](k>(f �m)
Z

‖m‖1
+ b), (1)

where � is the Hadamard’s product. It can be seen that the output of the function only depends on the unmasked inputs.
The scaling factor Z

‖m‖1
applies appropriate scaling to adjust for the varying amount of valid (unmasked) inputs. At the

beginning, we initialize the mask m such that it excludes the dropped pixels of the input Bernoulli sampled instance as well
as those of the input images (e.g. in removing salt-and-pepper noise). After crossing the current PConv layer, we then update
the mask for the next PConv layer as follows: if the convolution was able to condition its output on at least one valid input
value, then we mark that location to be valid. This can be expressed asm′ = 1[‖m‖1 > 0], which can be easily implemented
as a part of forward pass. See [1] for more details.

2. Proof of Proposition 1
Proof. Rewrite the loss function as follows:

M∑
m=1

‖Fθ(ŷm)− ȳm‖2bm =

M∑
m=1

‖Fθ(ŷm)− y‖2bm =

M∑
m=1

‖Fθ(ŷm)− (x+ n)‖2bm

=

M∑
m=1

‖Fθ(ŷ)− x‖2bm +

M∑
m=1

‖n‖2bm − 2

M∑
m=1

((1− bm)� n)>(Fθ(ŷm)− x)

=

M∑
m=1

‖Fθ(ŷ)− x‖2bm +

M∑
m=1

‖n‖2bm − 2n>(M∑
m=1

(1− bm)� (Fθ(ŷm)− x)
)
.

(2)

Regarding the second term in (2), its expectation is

En
[M∑
m=1

‖n‖2bm
]

= En
[M∑
m=1

‖(1− bm)� n‖22
]

=

M∑
m=1

‖(1− bm)� σ‖22 =

M∑
m=1

‖σ‖2bm . (3)

Regarding the last term in (2), for simplicity we define

r =

M∑
m=1

(1− bm)� (Fθ(ŷm)− x) =

M∑
m=1

(1− bm)� (Fθ(bm � x+ bm � n))− x). (4)

1

Note that Fθ(bm�x+ bm�n) contributes to r(i) only if bm(i) = 0. But in this case, n(i) is erased by bm(i). This means
that n(i) has no contribution to r(i). Together with that n(i) is independent of n(j) for any i 6= j, we can conclude that r(i)
is independent to n(i) for all i. Therefore, we have

En
[
n>r

]
= (En

[
n
]
)>(En

[
r
]
) = 0. (5)

Combining (2), (3) and (5) yields

En
[M∑
m=1

‖Fθ(ŷm)− ȳm‖2bm
]

= En
[M∑
m=1

‖Fθ(ŷ)− x‖2bm
]

+ En
[M∑
m=1

‖n‖2bm]− 2En[n>r]

=

M∑
m=1

‖Fθ(ŷ)− x‖2bm +

M∑
m=1

‖σ‖2bm .

(6)

The proof is done.

3. More Results on Blind Gaussian Denoising

KSVD (20.44dB) PALM-DL (20.42dB) CBM3D (24.37dB) DIP* (23.97dB) N2V(1) (22.60dB) N2S(1) (23.31dB)

N2V (23.60dB) N2S (24.34dB) N2N (25.10dB) DnCNN (24.86dB) Ours (25.12dB) Truth (PSNR)

Figure 1: Visual results of blind AWGN denoising on image ’Kodim01’ of Set9 with noise level σ = 75.

KSVD (26.80dB) PALM-DL (26.53dB) BM3D (27.06dB) DIP* (26.30dB) N2V(1) (25.70dB) N2S(1) (26.08dB)

N2V (26.97dB) N2S (27.19dB) N2N (27.53dB) DnCNN (27.65dB) Ours (27.77dB) Truth (PSNR)

Figure 2: Visual results of blind AWGN denoising on image ’223061’ on BSD68 with noise level σ = 25.

4. More Results on Removal of Real-World Image Noise
Due to space limitation, the quantitative results of N2V(1) and N2S(1) are not listed in Table 2 in our main paper. The

following are their results. (a) N2V(1): PSNR=34.14dB, SSIM=0.95; (b) N2S(1): PSNR=34.69dB, SSIM=0.97. Also,
regarding the visual comparison in Fig. 3 in our main paper, the results of some methods are not presented. For completeness,
we show the results of all compared methods in Fig. 3. See also Fig. 4 for one more example on visual comparison.

TWSC (33.78dB) CBM3D (34.39dB) DIP (34.20dB) N2V(1) (29.69dB) N2S(1) (31.85dB)

N2V (32.92dB) N2S (32.87dB) DnCNN (34.26dB) Ours (34.69dB) Truth (PSNR)

Figure 3: Denoising results on a real-world noisy image by different methods.

TWSC (33.38dB) CBM3D (33.64dB) DIP (33.16dB) N2V(1) (30.52dB) N2S(1) (31.50dB)

N2V (31.52dB) N2S (30.97dB) DnCNN (33.26dB) Ours (34.25dB) Truth (PSNR)

Figure 4: Denoising results on a real-world noisy image by different methods.

References
[1] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catanzaro. Image inpainting for irregular holes

using partial convolutions. In Proc. ECCV, pages 85–100, 2018. 1

