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A. Proof of Lemma 2

Proof. Let Xi be a random vector taking values in Rd with
mean µ = E[X] and covariance matrix R = E(X −
µ)(X − µ)T . Given the X1, . . . , Xn, the goal is to esti-
mate µ. If X has a multivariate Gaussian or sub-Gaussian
distribution, the sample mean µ̄N = 1

N

∑N
i=1Xi is the re-

sult of MLE estimation, which satisfies, with probability at
least 1− δ

||µ̄N − µ|| ≤
√

Tr(R)

N
+

√
2λmax log(1/δ)

N
(1)

where Tr(R) and λmax denote the trace and largest eigen-
value of the covariance matrix R, respectively [3]. We
already know the truncated normal distribution mean and
variance. Although, the truncated distribution is similar to
Gaussian, we need to prove that it satisfies the sub-Gaussian
distribution property so that we can use the bound in (1).

The truncated distribution with mean µ and covariance
matrix R is a sub-Gaussian distribution. A given distribu-
tion is sub-Gaussian if for all unit vectors {v ∈ Rd : ||v|| =
1} [5], the following condition holds

E [exp(λ〈v, X − µ〉)] ≤ exp(cλ2〈v,Σv〉). (2)

Assuming the hyperplanewTX ≥ 0 truncated Normal dis-
tribution with mean zero and covariance matrix Σ, the left
hand side of the (13) can be computed as:

E [exp(λ〈v, X − µ〉)] =

∫
H+

exp(λvTX)φd(X|Σ)dX

(3)

where H+ = {X ∈ Rd : wTX ≥ 0}. Since R is a sym-
metric, positive definite matrix, using Cholesky decomposi-
tion we can have R−1 = ΨTΨ where Ψ is a non-singular,
upper triangular matrix [4]. By transforming the variables,

we have Y = ΨX . Using Y , with some manipulation as in
[7], one can get

E [exp(λ〈v, X − µ〉)] = exp
(

1

2
λ2vTΣv

)
Φ

[
λwTΣv

σ

]
(4)

and σ2 = wTΣw, and Φ[.] is the cumulative distribu-
tion function of the univariate normal distribution. Plugging
Σ = I, one can get

E [exp(λ〈v, X〉)] = exp
(

1

2
λ2
)

Φ
[
λwTv

]
≤ exp

(
1

2
λ2
)
, (5)

where the inequality is valid due to the fact that the CDF
function is equal to 1 in the maximum. Comparing with the
right hand side of the (13):

exp
(

1

2
λ2
)
≤ exp

(
1

2
cλ2
)
, (6)

one can see that it is valid for any c ≥ 1. Thus, the truncated
Normal distribution is a sub-Gaussian distribution.

The above proof is consistent with our intuition as the
truncated Gaussian has the tails approaching zero at least as
fast as exponential distribution. The truncated part of the
Gaussian is already equal to zero so there is no chance for
being a heavy tailed distribution. Thus, the bound provided
in (1) can be valid for our problem [5].

Since the covariance matrix R is unknown, we need to
find bounds for Tr(R) and λmax as well. It can easily be
obtained that

Tr(R) = d+ c2w
Tw = d+ c2 (7)

In order to obtain the maximum eigenvalue of the R, we
use Weyl’s inequality to have an upper bound for largest



Gradient Direction

Figure 1: Convex decision boundary with bounded curva-
ture.

eigenvalue of the covariance matrix as [6]:

λmax(A+B) ≤ λmax(A) + λmax(B) (8)

The largest eigenvalue for the identity matrix I is 1. For
the rank-1 matrix c2wwT which is the outer product of the
normal vector is given by:

λmax(c2ww
T ) = c2Tr(wwT ) = c2w

Tw = c2 (9)

which immediately results in λmax(R) ≤ 1 + c2. Sub-
stituting the above values to the (12), the sample mean
µ̄N = 1

N

∑N
i=1Xi is the result of MLE estimation, which

satisfies, with probability at least 1− δ

‖µ̄N − µ‖ ≤
√
d+ c2
N

+

√
2(1 + c2) log(1/δ)

N
(10)

This bound can provide an upper bound with probability at
least 1− δ for the error of the sample mean while getting N
queries from the neural network.

R

sin(θt)
=

rt
sin(θt+1)

(11)

B. Proof of Theorem 1

In the following subsections, we consider two cases for
the curvature of the boundary.

Convex Curved Bounded Boundary

We assume that the curvature of the boundary is convex as
given in Fig. 1. As given in [2], if θt satisfies the two as-
sumptions tan2 (θt) ≤ 0.2R/r and r/R < 1, the value for
‖xt − x0‖2 = rt is given as follows:

rt = −(R− r) cos(θt) +
√

(R− r)2 cos2(θt) + 2Rr − r2
(12)

Gradient Direction

Figure 2: Concave decision boundary with bounded curva-
ture.

where ‖xt+1 − x0‖2 = rt+1 can be obtained in a similar
way. It can be observed that the value of the rt is an increas-
ing function of the θt because:

∂rt
∂θt

= (R− r) sin(θt)

− (R− r)2 cos(θt) sin(θt)√
(R− r)2 cos2(θt) + 2Rr − r2

, (13)

Setting ∂rt
∂θt

> 0, with some manipulations one can get
2R > r which shows that rt is an increasing function of
the θt. Thus, if we can show that θt > θt+1, it means that
rt > rt+1 which means that rt can converge to r. Here, we
assume that the given image is in the vicinity of the bound-
ary r/R < 1. The line connecting point o to x0 intersects
the two parallel lines. Based on the law of sines, one can get
Since rt < R, one can conclude that θt > θt+1 using the
sines law. Thus, as rt is an increasing function of θt, we can
get rt+1 < rt. Thus, after several iterations, the following
update rule

xt = x0 + rtŵNt
(14)

converges to the minimum perturbation r.
Applying the sine law for k iterations, one can get the

following equation using (11):

sin(θt) =

∏t
i=0 ri
Rt

sin(θ0) (15)

We know that rt < R and in each iteration, it gets smaller
and smaller. Thus, for the convergence, we consider the
worst case. We know that maxi=0,1,...,t{ri} = rt. Thus, To
bound this, we can have:

sin(θt+K) =

∏K
k=0 rt+k
RK

sin(θt) ≤ (
rt
R

)K sin(θt) (16)

where can be reduced to

sin(θt+K) ≤ (
rt
R

)K sin(θt) (17)



This shows that sin(θt+K) converges to zero exponentially
since rt < R. Thus, θt+k goes to zero which results that
the in coinciding the rt and r in the same magnitude. Thus,
we have

lim
k→∞

rt+k = r (18)

We already know that

rt+1 =− (R− r) cos(θt+1)

+
√

(R− r)2 cos2(θt+1) + 2Rr − r2, (19)

Considering the cosine law, based on the figure, we can see
that

r2t = (R+ r)2 +R2 − 2R(R+ r) cos(θt+1) (20)

By combining the above equations and eliminating the
cos(θt+1), one can get:

rt+1 = −(R− r) (R+ r)2 +R2 − r2t
2R(R+ r)

+

√
(R− r)2((R+ r)2 +R2 − r2t )2

4R2(R+ r)2
+ 2Rr − r2,

(21)

Plugging (21) into the following limit,

lim
t→∞

rt+1 − r
rt − r

(22)

for t→∞, we get 0
0 . Thus, using the L’Hospital’s Rule, we

take the derivative of the numerator and the denominator as:
∂rt+1

∂rt
= −rt(R− r)

R(R+ r)

+
((R+ r)2 +R2 − r2t )rt

2
√

(R−r)2((R+r)2+R2−r2t )2
4R2(R+r)2 + 2Rr − r2

(R− r)2

R2(R+ r)2

(23)

Having t→∞, we can get rt → r, since we have r̂t → rt,
thus:

lim
t→∞

r̂t+1 − r
r̂t − r

=
r2(R− r)
R2(R+ r)

= λ < 1 (24)

As r < R, the rate of convergence λ ∈ (0, 1) which com-
pletes the proof.

Concave Curved Bounded Boundary

As in [2], the value for ‖xt−x0‖2 = rt is given as follows:

rt = (R+ r) cos(θt)−
√

(R+ r)2 cos2(θt)− 2Rr − r2
(25)

where ‖xt+1 − x0‖2 = rt+1 can be obtained in a similar
way. It can easily be seen that the θt > θt+1. Assuming
r/R < 1, rt is a decreasing function with respect to θt
which results in rt < rt+1. Similar proof of convergence
can be obtained for this case as well.

C. Proof of Theorem 2

Given the point rt−1, the goal is to find the estimate of
the r̂t with limited query. Assuming the normalized version
of the true gradient wt = µt/‖µt‖2, we have

‖ŵNt
−wt‖ ≤

γ√
Nt

(26)

where γ =
√

Tr(R) +
√

2λmax log(1/δ), ŵNt is the esti-
mated gradient at iteration t andNt is the number of queries
to estimate the gradient at point xt−1. Based on the reverse
triangle inequality ‖x‖ − ‖y‖ ≤ ‖x− y‖, we can have

‖ŵNt
‖ − 1 ≤ ‖ŵNt

−wt‖ ≤
γ√
Nt
. (27)

Multiplying by rt, we have:

rt −
γrt√
Nt
≤ r̂t ≤ rt +

γrt√
Nt
. (28)

where r̂t = rt‖ŵNt
‖. Here, we conduct the analysis in the

limit sense and we observe in the simulations that it is valid
in limited iterations as well. Given rt−1, for large t, we
have:

rt − r ≈ λ(rt−1 − r) (29)

Considering the best and worst case for the estimated gra-
dient, we can find the following bound. In particular, the
best case is the case in which all the gradient errors are con-
structive and make the r̂t in each iteration smaller than rt.
In contrast, the worst case happens when all the gradients
directions are destructive and make the r̂t greater than rt.
In practice, however, what is happening is something in be-
tween. Substituting rt from (28) in (29), one can obtain:

λ(rt−1− r)−
γrt√
Nt
≤ r̂t− r ≤ λ(rt−1− r) +

γrt√
Nt

(30)

By using the iterative equation, one can get the following
bound:

λt(r0 − r)− e(N) ≤ r̂t − r ≤ λt(r0 − r) + e(N) (31)

where e(N) = γ
∑t
i=1

λt−iri√
Ni

is the error due to limited
number of queries.

D. Proof of Theorem 3

It can easily be observed that the optimization problem
is convex. Thus, the duality gap between this problem and
its dual optimization problem is zero. Therefore, we can
solve the given problem by solving its dual problem. The
Lagrangian is given by:

L(N , α) =

T∑
i=1

λ−iri√
Ni

+ α

(
T∑
i=1

Ni −N

)
(32)



where α is the non-negative dual variable associated with
the budget constraint. The KKT conditions are given as fol-
lows [1]:

∂L(N , α)

∂Nt
= 0, ∀i (33)

α

(
T∑
i=0

Ni −N

)
= 0 (34)

T∑
i=1

Ni ≤ N (35)

Based on (33), taking the derivative and setting equal to
zero, we can have

Nt =

(
λ−trt

2α

) 2
3

(36)

We see that the constraint holds with equality. Assume that∑t
i=0Ni 6= N , then based on (34), α = 0. If α = 0 then

based on (36), we have Ni =∞, ∀i which contradicts with
(35). Substituting (36) in

∑t
i=0Ni = N , the Lagrangian

multiplier can be obtained as

α
2
3 =

1

2
2
3

∑T
i=1(λ−iri)

2
3

N
(37)

Substituting α in (36), one can get the optimal number of
queries as:

N∗t =
(λ−trt)

2
3∑T

i=1(λ−iri)
2
3

N (38)

For t→∞, we have rt → r. Based on this, the ratio of the
optimal number if queries for each iteration is given by:

N∗t ≈
λ−

2
3 t∑T

i=1 λ
− 2

3 i
N (39)

This equation shows that the distribution of the queries
should be increased by a factor of λ−

2
3 where 0 < λ < 1.

By approximation, we have

N∗t+1

N∗t
≈ λ− 2

3 (40)

which completes the proof.

1. Additional experiment results
Here we show more experiments on the performance of

GeoDA on different `p norms. In Figs. 3, Figs. 4, Figs. ??,
and Figs. ??, we have generated adversarial examples using
GeoDA. For each image, the first row consists of (from left
to right) original image, `2 fullspace adversarial example,
`2 subspace adversarial example, `∞ fullspace adversarial

example, `∞ subspace adversarial example, and `1 adver-
sarial example, respectively. However, as can be seen the
perturbations are not quite visible in the actual adversarial
examples in the first row. In the second row, we show the
magnified version of perturbations for `2 and `∞. To do so,
the norm of all the perturbations is magnified to 100 given
that the images coordinate normalized to the 0 to 1 scale.
For the sparse case, we do not magnify the perturbations
as they are visible and equal to their maximum (minimum)
values. Finally, in the third row, we added a magnified ver-
sion of the perturbation with norm of 30 to have a better
visualization.

Queries ResNet-50 ResNet-101

500 11.76 17.91
GeoDA (`2) 2000 3.35 6.38

10000 1.06 1.87

Table 1: The performance comparison of GeoDA on differ-
ent ResNet image classifiers.

In Table 1, we have compared the performance of
GeoDA with different deep network image classifiers. The
proposed algorithm GeoDA follows almost the same trend
on a wide variety of deep networks. The reason is that the
core assumption of GeoDA, i.e. boundary has a low mean
curvature in vicinity of the datapoints, is verified empiri-
cally for a wide variety of deep networks. We can provide
the experimental results on different networks.
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Figure 3: Original images and adversarial perturbations generated by GeoDA for `2 fullspace, `2 subspace, `∞ fullspace, `∞
subspace, and `1 sparse with N = 10000 queries.
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Figure 4: Original images and adversarial perturbations generated by GeoDA for `2 fullspace, `2 subspace, `∞ fullspace, `∞
subspace, and `1 sparse with N = 10000 queries.


