
(Supplementary) DLWL: Improving Detection for Lowshot classes with Weakly
Labelled data

Vignesh Ramanathan
Facebook

vigneshr@fb.com

Rui Wang
Facebook

ruiw@fb.com

Dhruv Mahajan
Facebook

dhruvm@fb.com

1. Linear Porgram Optimization
We are interested in solving the following optimization

problem during every training iteration for a weakly la-
belled image.

Y = argmaxY Tr
(
ST
CY
)
, (1)

s. t. Y1 = 1,

0 ≤ Y ≤ 1,∑
p

ypc = Nc, ∀ c ≤ C,

∑
p∈hi

ypc ≤ 1, ∀ c ≤ C, 1 ≤ i ≤ H.

With about 1000 proposals per image and with even 3−4
different objects each with 2−3 instances in the image, this
linear program can become very time consuming to solve
with typical LP solvers. Instead, we leverage the inherent
separable nature of the variables to use ADMM to solve the
equations. We first observe that in the absence of the con-
straint Y1 = 1, the optimization problem can be attacked
by solving for each column of Y separately. And as we
show later, solving for each column separately in absence
of this constraint can be done very efficiently. We can now
use this idea to define the augmented Lagrangian for the
problem as follows:

Y = argminY,z − Tr
(
ST
CY
)
+ zT (Y1− 1) +

ρ

2
‖Y1− 1‖2,

s. t. 0 ≤ Y ≤ 1,∑
p

ypc = Nc, ∀ c ≤ C,

∑
p∈hi

ypc ≤ 1, ∀ c ≤ C, 1 ≤ i ≤ H,

where z is a dual variable and ρ is the dual step-length (op-
timization parameter). We set ρ to be 1000 in our work. In
line with the ADMM algorithm, we can now solve for each
column of Y one at a time, then optimize for z and then

repeat the process again till convergence. In practice we
observe convergence within less than 5 steps. More specifi-
cally, let yc be the cth column of Y and sc be the cth column
of SC .

At each iteration k + 1, we solve for each column of Y
sequentially starting from yk+1

1 to yk+1
C+1. In particular, we

solve the following optimization problem:

yk+1
c = argminyc

− scyc +
ρ

2
‖yc + bk

c + zk‖2, (2)

s. t. 0 ≤ ypc ≤ 1,∑
p

ypc = Nc, if c ≤ C

∑
p∈hi

ypc ≤ 1, ∀ 1 ≤ i ≤ H, if c ≤ C

where bk
c = Yk1 − 1 −

∑
i≤c y

k
c +

∑
i<c y

k+1
c . Then

finally we update zk+1 as follows:

zk+1 = zk +
(
Yk+11− 1

)
(3)

The overall optimization problem then reduces to solv-
ing Eq. 2 efficiently for each weakly labelled class in the
image. We first look into the case when c = C + 1. This
does not involve the last two constraints in Eq. 2 and reduces
to:

yk+1
C+1 = argminyC+1

− sC+1yC+1 +
ρ

2
‖yC+1 + bk

C+1 + zk‖2,

s. t. 0 ≤ ypC+1 ≤ 1,

which is straightforward to solve, since the objective func-
tion and constraint separate out in terms of each individual
variable in the vector yC+1. This has a deterministic solu-
tion obtained by minimizing the objective and projecting to
the simplex 0 ≤ ypC+1 ≤ 1.

Moving on to the case when 1 ≤ c ≤ C, we first observe
that if the objective in Eq. 2 was linear instead of quadratic,
the problem would reduce to a simple knapsack problem

1



with a greedy solution. This leads to the idea of using a
conditional gradient descent method like Frank Wolfe [2]
to optimize the problem which replaces the objective with a
first order linear approximation of the objective. In practice,
we observe that using 1 or 2 steps of Frank-Wolfe [2] is
sufficient to obtain a good solution for the problem. We
initialize the Frank Wolfe algorithm by choosing the top Nc

clusters with the highest scores for class c and setting ypc =
1 for the highest scoring proposal in each of the clusters.

2. List of lowshot COCO classes
In our experiments on COCO, we had split COCO

classes into a set of 10 lowshot classes and 70 high-
shot classes. The 10 lowshot classes were cho-
sen at random and kept fixed for all experiments.
The 10 classes are:cow,motorcycle,knife,remote,hot
dog,skateboard,dog,truck,cup,orange.

3. Bootstrapping with weaker model
3.1. Annealing the bootstrapping weight

We anneal the weight λ over time to 0 gradually. We
tried different annealing techniques and found exponential
decay to work the best as shown below:

λt = λ0
e− e

t
T

e− 1
,

where λt is the weight at iteration t, λ0 is the initial weight
and T is the total number of training iteration.

3.2. Bootstrapping for weakly supervised model

As explained in the main draft, for weakly supervised
experiments we do not have an initial lowshot model to
use for bootstrapping. Hence, we instead train an initial
weakly supervised model WSDDN [1] and use the scores
from this model for bootstrapping. However, unlike FR-
CNN we need to provide external proposals to train a WS-
DDN model. Hence we use Selective Search [4] proposals
and MCG proposals [3] for PASCAL VOC and COCO14
datasets respectively to train the WSDDN model. Once the
WSDDN model is trained, we extract 100 detections per
image along with corresponding scores using WSDDN and
the above proposals for all training images. The scores from
these detections are then used to bootstrap training of the
FRCNN model with our DWL framework.

Note that we do not need external proposals to train
the FRCNN model. However, since there are no highshot
classes and associated fully labelled images to guide the
RPN part of the network, we do not set the RPN loss to
zero while training the FRCNN unlike the lowshot setup.
Rather the RPN is also trained with the bounding box labels
inferred using our DWL method.

4. Augmenting with images from YFCC100M
For every “rare” class in LVIS, we use the follow-

ing scheme to obtain weakly labelled images from
YFCC100M:

1. Each class in LVIS is associated with a set of different
synonyms. We use these synonyms to obtain images from
YFCC100M which are tagged with one of the synonyms.
Apart from the actual synonym, we also use plurals of each
synonym to obtain images from YFCC100M.

2. We also use nearest neighbor based expansion to obtain
additional images from YFCC100M. In particular for ev-
ery annotated bounding box corresponding to a rare class
in LVIS, we expand its height and width by 1.2 times and
crop the resulting expanded bounding box. This provides an
image of the rare class object with some additional context.
We use each cropped bounding box to obtain 100 nearest
neighbors from YFCC100M using cosine similarity. We
only retain images which have a cosine distance less than
0.25. This results in thousands of images for each rare class.

3. We combine the images obtained from both steps above
to form an expanded set of images for each rare class. For
every rare class, we only retain 500 images from this set
based on scores from an initial lowshot model. Specifically,
we rank all images corresponding to a rare class by the high-
est detection score for the rare class obtained from the initial
lowshot model. We then only retain the top 500 images for
each rare class. This forms the final set of weakly labelled
images. Note that the same image can be associated with
multiple rare class labels. In addition to the rare class label,
we also use the YFCC tags of each image corresponding to
other LVIS classes to associate additional weak labels to the
image.

References
[1] Hakan Bilen and Andrea Vedaldi. Weakly supervised deep de-

tection networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2846–2854,
2016. 2

[2] Marguerite Frank and Philip Wolfe. An algorithm for
quadratic programming. Naval research logistics quarterly,
3(1-2):95–110, 1956. 2

[3] Jordi Pont-Tuset, Pablo Arbelaez, Jonathan T Barron, Fer-
ran Marques, and Jitendra Malik. Multiscale combinatorial
grouping for image segmentation and object proposal genera-
tion. IEEE transactions on pattern analysis and machine in-
telligence, 39(1):128–140, 2016. 2

[4] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers,
and Arnold WM Smeulders. Selective search for object recog-
nition. International journal of computer vision, 104(2):154–
171, 2013. 2


