
A. Table of ImageNet Results

In Table 2 we provide a table of the results for image classifica-
tion with ImageNet [4]. These results correspond exactly to Figure
8.

B. Additional Technical Details

In this section we first prove a more general case of Theorem
1 then provide an extension of edge-popup for convolutions
along with code in PyTorch [23], found in Algorithm 1.

B.1. A More General Case of Theorem 1

Theorem 1 (more general): When a nonzero number of edges
are swapped in one layer and the rest of the network remains fixed
then the loss decreases for the mini-batch (provided the loss is
sufficiently smooth).
Proof. As before, we let s̃uv denote the score of weight wuv after
the gradient update. Additionally, let Ĩv denote the input to node v
after the gradient update whereas Iv is the input to node v before
the update. Finally, let i1, ..., in denote the n nodes in layer `� 1
and j1, ..., jm denote the m notes in layer `. Our goal is to show
that

L
⇣
Ĩj1 , ..., Ĩjm

⌘
< L

⇣
Ij1 , ..., Ijm

⌘
(12)

where the loss is written as a function of layer `’s input for brevity.
If the loss is smooth and Ĩjk is close to Ijk we may ignore second-
order terms in a Taylor expansion:

L
⇣
Ĩj1 , ..., Ĩjm

⌘
(13)

= L
⇣
Ij1 +

⇣
Ĩj1 � Ij1

⌘
, ..., Ijm +

⇣
Ĩjm � Ijm

⌘⌘
(14)

= L (Ij1 , ..., Ijm) +
mX

k=1

@L
@Ijk

⇣
Ĩjk � Ijk

⌘
(15)

And so, in order to show Equation 12 it suffices to show that

mX

k=1

@L
@Ijk

⇣
Ĩjk � Ijk

⌘
< 0. (16)

It is helpful to rewrite the sum to be over edges. Specifically,
we will consider the sets Eold and Enew where Enew contains all
edges that entered the network after the gradient update and Eold

consists of edges which were previously in the subnetwork, but
have now exited. As the total number of edges is conserved we
know that |Enew| = |Eold|, and by assumption |Enew| > 0.

Using the definition of Ik and Ĩk from Equation 3 we may
rewrite Equation 16 as

X

(ia,jb)2Enew

@L
@Ijb

wiajbZia �
X

(ic,jd)2Eold

@L
@Ijd

wicjdZic < 0

(17)

which, by Equation 6 and factoring out 1/↵ becomes
X

(ia,jb)2Enew

(siajb � s̃iajb)�
X

(ic,jd)2Eold

(sicjd � s̃icjd) < 0.

(18)

We now show that

(siajb � s̃iajb)� (sicjd � s̃icjd) < 0 (19)

for any pair of edges (ia, jb) 2 Enew and (ic, jd) 2 Eold. Since
|Enew| = |Eold| > 0 we are then able to conclude that Equation 18
holds.

As (ia, jb) was not in the edge set before the gradient update,
but (ic, jd) was, we can conclude

siajb � sicjd < 0. (20)

Likewise, since (ia, jb) is in the edge set after the gradient update,
but (ic, jd) isn’t, we can conclude

s̃icjd � s̃iajb < 0. (21)

By adding Equation 21 and Equation 20 we find that Equa-
tion 19 is satisfied as needed.

B.2. Extension to Convolutional Neural Networks

In order to show that our method extends to convolutional lay-
ers we recall that convolutions may be written in a form that re-
sembles Equation 2. Let  be the kernel size which we assume is
odd for simplicity, then for w 2 {1, ...,W} and h 2 {1, ..., H}
we have

Iw,h

v =
X

u2V(`�1)

X

1=1

X

2=1

w
(1,2)
uv Z(w+1�d2 e,h+2�d2 e)

u

(22)

where instead of “neurons”, we now have “channels”. The input
Iv and output Zv are now two dimensional and so Z(w,h)

v is a
scalar. As before, Zv = � (Iv) where � is a nonlinear function.
However, in the convolutional case � is often batch norm [11] fol-
lowed by ReLU (and then implicitly followed by zero padding).

Instead of simply having weights wuv we now have weights
w

(1,2)
uv for 1 2 {1, ...,}, 2 2 {1, ...,}. Likewise, in

our edge-popup Algorithm we now consider scores s
(1,2)
uv

and again use the top k% in the forwards pass. As before,
let h

⇣
s
(1,2)
uv

⌘
= 1 if s

(1,2)
uv is among the top k% highest

scores in the layer and h

⇣
s
(1,2)
uv

⌘
= 0 otherwise. Then in

edge-popup we are performing a convolution as

Iw,h

v =
X

u2V(`�1)

X

1=1

X

2=1

w
(1,2)
uv Z(w+1�d2 e,h+2�d2 e)

u h

⇣
s
(1,2)
uv

⌘
(23)

which mirrors the formulation of edge-popup in Equation 4. In
fact, when  = W = H = 1 (i.e. a 1x1 convolution on a 1x1
feature map) then Equation 23 and Equation 4 are equivalent.

The update for the scores is quite similar, though we must now
sum over all spatial (i.e. w and h) locations as given below:

s
(1,2)
uv s

(1,2)
uv

� ↵

WX

w=1

HX

h=1

@L
@Iw,h

v

w
(1,2)
uv Z(w+1�d2 e,h+2�d2 e)

u

(24)

Method Model Initialization % of Weights # of Parameters Accuracy

ResNet-34 [9] - - 21.8M 73.3%
Learned Dense Weights (SGD) ResNet-50 [9] - - 25M 76.1%

Wide ResNet-50 [32] - - 69M 78.1%

ResNet-50 Kaiming Normal 30% 7.6M 61.71%
edge-popup ResNet-101 Kaiming Normal 30% 13M 66.15%

Wide ResNet-50 Kaiming Normal 30% 20.6M 67.95%

ResNet-50 Signed Kaiming Constant 30% 7.6M 68.6%
edge-popup ResNet-101 Signed Kaiming Constant 30% 13M 72.3%

Wide ResNet-50 Signed Kaiming Constant 30% 20.6M 73.3%

Table 2. ImageNet [4] classification results corresponding to Figure 8. Note that for the non-dense models, # of Parameters denotes the
size of the subnetwork.

Algorithm 1 PyTorch code for an edge-popup Conv.

class GetSubnet(autograd.Function):
@staticmethod
def forward(ctx, scores, k):

Get the subnetwork by sorting the scores and
using the top k%

out = scores.clone()
_, idx = scores.flatten().sort()
j = int((1-k) * scores.numel())

flat_out and out access the same memory.
flat_out = out.flatten()
flat_out[idx[:j]] = 0
flat_out[idx[j:]] = 1

return out

@staticmethod
def backward(ctx, g):

send the gradient g straight-through on the
backward pass.

return g, None

class SubnetConv(nn.Conv2d):
self.k is the % of weights remaining, a real

number in [0,1]
self.popup_scores is a Parameter which has the

same shape as self.weight
Gradients to self.weight, self.bias have been

turned off.
def forward(self, x):

Get the subnetwork by sorting the scores.
adj = GetSubnet.apply(

self.popup_scores.abs(), self.k)
Use only the subnetwork in the forward pass.
w = self.weight * adj
x = F.conv2d(

x, w, self.bias, self.stride, self.padding,
self.dilation, self.groups

)
return x

In summary, we now have 
2 edges between each u and v.

The PyTorch [23] code is given by Algorithm 1, where h is
GetSubnet. The gradient goes straight through h in the back-
ward pass, and PyTorch handles the implementation of these equa-
tions.

Figure 11. Repeating the experiments from Figure 3 with
ResNet18 on CIFAR.

C. Additional Experiments

C.1. Resnet18 on CIFAR-10

In figure 11 we experiment with a more advanced network ar-
chitecture on CIFAR-10.

C.2. Are these subnetworks lottery tickets?

What happens when we train the weights of the subnetworks
form Figure 8 and Table 2 on ImageNet? They do not train to the
same accuracy as a dense network, and do not perform substan-
tially better than training a random subnetwork. This suggests that
the good performance of these subnetworks at initialization does
not explain the lottery phenomena described in [5]. The results
can be found in Table 3, where we again use the hyperparameters
found on NVIDIA’s public github example repository for training
ResNet [22].

Subnetwork Type Model Initialization % of Weights # of Parameters Top 1 Accuracy Top 5 Accuracy

ResNet-50 [9] Kaiming Normal 30% 7.6M 73.6% 91.6%
Learned ResNet-50 [9] Signed Constant 30% 7.6M 73.7% 91.5%

Wide ResNet-50 [32] Kaiming Normal 30% 20.6M 76.8% 93.2%
Wide ResNet-50 [32] Signed Constant 30% 20.6M 76.9% 93.3%

ResNet-50 [9] Kaiming Normal 30% 7.6M 73.5% 91.5%
Random Wide ResNet-50 [32] Kaiming Normal 30% 20.6M 76.5% 93.1%

ResNet-101 [9] Kaiming Normal 30% 13M 76.1% 93.0%

Table 3. ImageNet [4] classification results after training the discovered subnetworks. Surprisingly, the accuracy is not substantially better
than training a random subnetwork. This suggests that the good performance of these subnetworks does not explain the lottery phenomena
described in [5].

