
Appendix

A. Model Training Details
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Figure 5. The U-net architecture used for G and F generator net-
works. Each convolutional block is shown with kernel size, num-
ber of filters and stride. Spectral normalization is applied to all
convolutions. Images are resized to be twice as high and wide
using nearest neighbor interpolation. Intermediate outputs from
the down-convolutions (left) are added during the up-convolutions
(right) as shown by the dotted lines, in two cases the first row
and column are dropped during addition to match sizes. Instance
normalization [32] is applied to all convolutions except the final
output convolution.

We use data-sets consisting of grasping episodes from
simulation and real robots. For Robot 1 and Robot 2 the
data-sets are 580,000 and 80,000 real robot episodes re-
spectively. Both data-sets are collected by starting with
a human-designed scripted policy, which succeeds a small
fraction of the time. Models are trained with this data, and
periodically, those models are deployed to the robot to col-
lect data from a better policy. When collecting data, random
exploration noise is added to collect more diverse data. For
this paper, we randomly subsample smaller datasets from
these larger sets, to study the performance when using vary-
ing amounts of real episodes. For both setups several mil-

lion simulated episodes are also generated during on-policy
training.

Typical episodes contain 6-10 states represented by a 512
pixel high, 640 pixel wide RGB image. To increase data
diversity images are randomly cropped to 472x472 during
training. At inference time, the center 472x472 square from
the image is used. The generator for the GAN is a con-
volutional neural network with a U-Net architecture [28]
as shown in 5. The discriminator is smaller convolu-
tional neural network that operates on three scales of the
input image. Both networks are described in detail in [3].
The robotic grasping task is trained via QT-Opt with the
Q-function represented as a convolutional neural network
(see [20] for architecture). RL-CycleGAN jointly trains
the Cycle-GAN along with the Q-function during QT-Opt.
Models are trained on Google TPUv3 Pod as in [5] and re-
quired bfloat16 precision training to fit in memory. Each
batch had 8 real images and 8 simulated images. We use
Adam optimizer [21] with β1 = 0.1 and β2 = 0.999 and a
constant learning rate of 0.0001. We employ Spectral Nor-
malization [36] in the GAN generator networks and find that
it improves stability.
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Figure 6. Training RL-CycleGAN via QT-Opt.

Figure 6 shows how we train RL-CycleGAN via QT-Opt.
Images from a simulator are transformed by Sim2Real gen-
erator G and then passed to Qreal to generate an action. In
this way, on-policy (w.r.t Qreal) episodes are generated in
the simulation-to-real environment. Off-policy real grasps
are read from disk. Separate replay buffers and bellman
update instances are used for the off-policy real and off-
policy simulation-to-real data. RL-CycleGAN is trained
with batches with equal parts from real and simulation-
to-real data. During training we evaluate the performance
of both Qsim and Qreal in the simulator, with simulation-
to-real applied prior to evaluating Qreal. Training con-
verges when certain conditions are met, the simulation-to-
real images look realistic, the cycled images look reason-
able with a reasonably low Lcyc, both Qsim and Qreal per-



Table 5. The various losses, their relative weights and the networks
they affect for RL-CycleGAN .

Loss Relative Weight (λ) Networks Updated
LGAN 1 G, F , DX , DY

Lcycle 10 G, F
LRL 10 Qsim, Qreal

LRL−scene 10 G, F

form well along with a reasonably low LRL−scene. A final
Qreal is trained from scratch with the pre-trained and fixed
Sim2Real generator G. This phase of training is as before,
but with only the reinforcement learning loss.

Depending on the relative loss weights, λ, RL-
CycleGAN might experience a particular mode of collapse,
where Q outputs incorrect, uniform Q-values that give a
spuriously low LRL−scene. This mode collapse can be
caught by monitoring performance ofQ during training and
tuning λ appropriately. RL-CycleGAN involves multiple
losses which are selectively applied to the various neural
network components. The relative loss weights and the neu-
ral networks affected by the various losses is listed in Ta-
ble 5.

We found that although adding a Q-network to Cycle-
GAN improved performance, it was critical to maintain
some separation between the two during optimization time.
When LRL and LRL−scene were optimized entirely end-to-
end, saliency analysis showed theQ-value for generated im-
ages was mostly dependent on generators G and F , rather
than Q. We theorized the generators were computing the
Q-value needed to minimize LRL−scene, embedding them
within the generated image, and the Q-networks were sim-
ply decoding the embedded value. Such a Q-network gen-
eralizes poorly, does not understand the scene, and con-
sequently does not provide a useful RL-scene consistency
loss.

To fix this, the gradient for LRL is only applied to Q,
and the gradient for LRL−scene is only applied to G and F .
Note that in both cases, we still compute the full backward
pass (there is no stop gradient), but we selectively choose
which networks the gradient is applied to. Doing so makes
it harder for the optimization to learn the poor encoding-
decoding behavior mentioned above.

Since we train with batches of equal amounts of data
from real data and from the simulator, we weight the loss
from the real data depending on how many real episodes
are available. While training the final Qreal a weighting
term λRL−real is applied,
LRL =

∑
Sim2Real LRL + λRL−real

∑
Real LRL

For all experiments we use λRL−real = 0.1 if using
10,000 real episodes or fewer, and λRL−real = 2 with

Table 6. The impact of using λRL−real. With only 3,000 real
episodes a small real loss weight of 0.1 is optimal while with a
large data-set of 80,000 real episodes a real loss weight of 2.0 was
found to be best.

Off-policy λRL−real Robot 2
episodes Grasp Success

3,000 1.0 66%
3,000 0.1 72%
80,000 1.0 91%
80,000 2.0 95%

80,000 real episodes or more. Ablation results are shown
in Table 6.

B. Robot Simulated Objects

Figure 7. Robot 1: procedural objects generated in the simulator
(top) and the unseen objects using during evaluation (bottom).

The goal with Robot 1 to be able to grasp unseen objects
during evaluation. In simulation we procedurally generate
objects with random shapes by attaching rectangular prisms
at random locations and orientations. These procedural ob-
jects and the actual unseen objects used during evaluation
are shown in Figure 7.

Since Robot 2 grasps trash-like objects we mimic the
simulated objects more closely with the real world object.
We create simulated versions of 51 common real world ob-
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Figure 8. Robot 2: simulated versions of 51 common real world
objects are used when training the RL-CycleGAN , including plas-
tic bottles (8), coffee cups (18), plastic utensils (3), drink cans (6),
mugs (15), and wine glass (1).

jects are created: plastic bottles (8), coffee cups (18), plastic
utensils (3), drink cans (6), mugs (15), and wine glass (1),
shown in Figure 8. These do not cover all the real world
objects used evaluation.


