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A. Pointing Game details

We use [6]’s Pointing Game for quantitative evalua-
tion of saliency methods. Saliency maps are computed
with respect to every object class present in each image.
If the maximally salient point for each class lands on the
ground truth annotation for that object (within a thresh-
old of 15 pixels), then a “hit” is recorded; otherwise, a
“miss” is recorded. Pointing game accuracy is computed as
the mean over per-class accuracies given by the following:

|hits|
|hits+misses| .

We evaluate VGG16 and ResNet50 networks that have
been trained on ImageNet and fine-tuned on PASCAL VOC
and COCO. We evaluate on the PASCAL VOC 2007 test
split (N = 4952 images) and COCO 2014 val split (N ≈
50k). We also show performance on the difficult subsets
of the data provided by [6]; these are images for which the
total area of the annotations (bounding boxes for PASCAL
VOC and segmentation masks for COCO) for the given ob-
ject class is less than 25% of the image size and for which
there is at least one other object class present. We use [2]’s
TorchRay library for evaluation; see [6] for more details.

B. Virtual identity trick correlations

We computed the correlation between saliency maps
generated both with and without the virtual identity trick
(paper section 4.1). The high correlation shown in Table 1,
as well as the minimal difference in pointing game perfor-
mance (0.53%±0.62%) demonstrates that the identity trick
closely approximates the behaviour of calculating the spa-
tial contributions for the original convolutional layers.

Architecture Layer Correlation
ResNet50 layer1.0.conv1 99.48 ± 0.55
ResNet50 layer2.0.conv1 99.32 ± 0.35
ResNet50 layer3.0.conv1 99.16 ± 0.42
ResNet50 layer4.0.conv1 98.35 ± 1.05
VGG16 features.2 97.77 ± 1.34
VGG16 features.7 99.15 ± 0.42
VGG16 features.14 98.99 ± 0.57
VGG16 features.21 97.79 ± 1.42
VGG16 features.28 94.33 ± 3.09

Table 1. Correlations between saliency maps generated with
and without the virtual identity trick. For both VGG16 and
ResNet50, the high values of correlation across the network (min
of 94.33) justify the use of the identity trick.

ResNet50 VGG16
All Difficult All Difficult

CEB layer3 layer4 feat.29 feat.29
EB layer4 layer4 feat.29 feat.29
GC layer4 layer4 feat.29 feat.29
Gd layer2 layer2 feat.29 feat.22
Gds layer2 layer2 feat.8 feat.8
Gui layer3 layer3 input input
LA layer4 layer4 feat.29 feat.29
NG layer3 layer3 feat.22 feat.22
sNG layer4 layer4 feat.29 feat.29

Table 2. Best individual layer for the Pointing game on VOC07.
(C)EB: (Contrastive) Excitation Backprop, GC: GradCAM, Gd(s):
Gradient (sum), Gui: guided backprop, LA: linear approximation,
(s)NG: (selective) NormGrad.

C. Performance of combining saliency maps
As noted in paper section 4.2, feature spread and classi-

fication accuracy are both interpretable as measures of fea-
ture sensitivity with respect to the class of the input image.
Figure 1 shows that both increase with network depth, with
the exception of feature spread for VGG16, which decreases
in the last two layers despite simultaneously increasing clas-
sification accuracy. We note that classification accuracy is a
more reliable metric than feature spread as it directly codes
for the separability of features with respect to class, whereas
feature spread is susceptible to non-material differences in
the absolute scale of activation values across layers. In the
case of VGG16, this means the features in the last two lay-
ers differ less across images (and hence, classes) in absolute
terms, but are nonetheless highly discriminative of class.

The performance gains of our weighting schemes over
using the best individual layer are given in table 3. The best
individual layers for computing maps are given in table 2,
which is notable as in no case does the practice of com-
puting saliency at the earliest layer produce the best perfor-
mance.

D. Meta-saliency analysis
We hypothesized that meta vs. non-meta saliency maps

should be less correlated for validation images than for
training images. This is because the inner gradient step of
meta-saliency should not be as impactful for a seen training
image as for an unseen validation image.

For both NormGrad and selective NormGrad, we evalu-
ated over time the average correlation between the impor-
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Figure 1. Weights for the different weighting methods. VGG16
on top and ResNet50 on the second row.

tance maps with and without meta-saliency on the training
and testing sets respectively. Figure 2 demonstrates that the
correlation scores are indeed decreased for validation im-
ages.

E. Model weights sensitivity
In fig. 5, we show the effects of cascading randomization

on linear approximation and selective NormGrad methods
by using the same images as [1] (“junco”, “corn” and “Irish
terrier”) to illustrate the model weights sensitivity.

Qualitatively, both methods - with and without meta-
saliency - demonstrate the desired sensitivity to model
weights as the saliency maps progressively lose focus from
the object target as layer depth decreases. We also observe
that using meta-saliency on top of the chosen base saliency
method (shown on every other line of fig. 5) delays the
degradation in saliency maps to earlier layers.

F. Image captioning
We show in this section a few examples of our pro-

posed selective NormGrad method applied to the image
captioning setting. We use a variant [4] of the original
neuraltalk2 [3] with a ResNet101 as backbone network fol-
lowed by the LSTM caption model. As in [5] we do a back-

ResNet50 VGG16
All Difficult All Difficult

LA + accuracy 0.57 1.47 0.22 2.09
LA + spread 0.81 1.66 -3.01 -7.18
LA + linear 0.68 0.74 0.36 2.22
LA + uniform 0.58 1.29 -0.61 -0.20
LA × accuracy 0.87 1.84 0.42 2.91
LA × spread 1.01 1.78 -2.92 -6.80
LA × linear 0.52 0.72 0.49 2.87
LA × uniform 0.32 0.83 -0.25 0.52
sNG + accuracy 1.08 1.37 0.48 0.85
sNG + spread 0.94 1.40 -3.66 -6.43
sNG + linear 0.94 1.67 0.62 0.85
sNG + uniform 0.25 0.54 -0.93 -2.55
sNG × accuracy 1.26 1.65 0.83 1.88
sNG × spread 1.12 2.09 -3.13 -6.18
sNG × linear 0.63 0.95 0.72 0.62
sNG × uniform 0.89 1.79 -0.27 -1.76

Table 3. Score gains compared to best individual layer per-
formance for weighting methods with Linear Approximation
(LA) and selective NormGrad (sNG) on the Pointing game on
VOC07. Paper showed that LA and sNG benefit from weighting
methods. Here we can observe that using the weights as exponents
in a product (lines with ×) is the most effective solution for both
LA and sNG on ResNet50 and VGG16. Both the weightings us-
ing the features spread and the layer accuracy perform the best on
ResNet50 but only the layer accuracy perform consistently across
datasets and saliency methods.

ward pass using the log probability of the generated caption
as objective function. We apply selective NormGrad be-
fore the final global average pooling and at the ReLU layers
just after the downsampling shortcuts of the third and fourth
macro blocks. We also compare these saliency maps with
the product combination map of these layers using a linear
weighting scheme (see section 4.2 in the paper). We no-
tice in fig. 6 that using a combination of layers produces a
sharper saliency map than for individual layers.



Epoch

M
ea

n 
C

or
re

la
tio

n 
fo

r N
or

m
G

ra
d

85

87

89

91

93

95

5 10 15 20

train val

Epoch

M
ea

n 
C

or
re

la
tio

n 
fo

r s
el

ec
tiv

e 
N

or
m

G
ra

d

85

87

89

91

93

95

5 10 15 20

train val

Figure 2. Correlation between meta and non-meta saliency
maps over time for train and val splits. For both NormGrad
(top) and selective NormGrad (bottom), the correlation is lower
on the validation split.
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Figure 3. Mean correlation on the val split between the meta-
saliency maps of selective NormGrad at epoch t and the end of
training. The saliency maps stabilize at the end of the training.
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Figure 4. Examples of positive and negative meta-saliency for
selective NormGrad. Negative meta-saliency (left images) corre-
sponds to a gradient ascent inner step whereas a gradient descent
step is used for the positive meta-saliency (images on the right).
The center images do not use meta-saliency.
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Figure 5. Model weights sensitivity on VGG16. Linear Approximation and selective NormGrad with and without meta-saliency.



Figure 6. Image captioning explanations. Selective NormGrad is applied at different layers or combination of layers (last column) of a
ResNet101. We observe that saliency maps at individual layers highlight a big part of the images. Using a combination of layers allows a
clearer focus on the important parts of the images.
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Figure 7. Visualizations for some methods of the Extract & Aggregate framework at different layers of VGG16. The gradient
backprogation method (first row) works well at all stages except at the end of the network. Selective NormGrad (last row), NormGrad
(third row) and Linear Approximation (second row) perform well across the network. Finally we can observe that selective NormGrad and
Linear Approximation are more class selective than NormGrad as the non targeted ”tiger cat” appears more in the third row.
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