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This supplementary file includes details of network architecture, ablation studies, comparison on benchmark datasets and
more results on real blurry images.

1. Network Architecture
1.1. Architecture of Gk

Due to the sparsity of blur kernel k, we only use simple fully connected network to implement Gk. The SoftMax is used
to meet the normalization constraint of blur kernel. The 1D output of Gk is finally reshaped to 2D blur kernel.

Table s1: The architecture of Gk . Fully connected layer is with the form Linear(input channel, output channel).

Input: kernel size mk × nk , zk (200) from the uniform distribution with seed 0.
Output: blur kernel k with size mk × nk .

Hidden layer Linear(200, 1000); ReLU
Output layer Linear(1000,mk × nk); SoftMax

Reshape 1D output to obtain 2D blur kenrel with size mk × nk

1.2. Architecture of Gx
As for Gx, we employ the encoder-decoder network with skip connections [9]. As shown in Fig. s1, the i-th unit encoder-

decoder architecture is first demonstrated. Taking ei as an example, we use the form ei(nf , k, p) to represent that the
convolutions in ei have nf filters with size k × k and p × p padding. We note that the filter size in the last convolution of
di is fixed as 1 × 1. The slope of LeakyReLU is 0.2, downsampling is implemented using stride = 2, and upsampling is
implemented using 2x bilinear interpolation. The generative network Gx have five units in Fig. s1, and its parameter settings
are detailed presented in Table s2. In our current implementation, Gx is used to only process the y channel given a color
image in ycbcr space.

Table s2: The architecture of Gx, which consists of five ei, di and si in Fig. s1. Convolution is with the form Conv.(input channel, output channel, kernel
size, padding size)

Input: zx (8×mx × nx) from the uniform distribution with seed 0.
Output: latent image x (1×mx × nx).

Encoder unit 1 e1(128, 3, 1), s1(16, 3, 1)
Encoder unit 2 e2(128, 3, 1), s2(16, 3, 1)
Encoder unit 3 e3(128, 3, 1), s3(16, 3, 1)
Encoder unit 4 e4(128, 3, 1), s4(16, 3, 1)
Encoder unit 5 e5(128, 3, 1), s5(16, 3, 1)
Decoder unit 5 d5(128, 3, 1)
Decoder unit 4 d4(128, 3, 1)
Decoder unit 3 d3(128, 3, 1)
Decoder unit 2 d2(128, 3, 1)
Decoder unit 1 d1(128, 3, 1)
Output layer Conv.(128,1,1,0); Sigmoid



Figure s1: One unit in encoder-decoder with skip connection, where ei is the i-th unit in encoder, di is the i-th unit in decoder and si is the skip connection
between ei and di. Taking ei as an example, we use the form ei(nf , k, p) to represent that the convolutions in ei have nf filters with size k× k and p× p
padding. We note that the filter size in the last convolution of di is fixed as 1 × 1. The slope of LeakyReLU is 0.2, downsampling is implemented using
stride = 2, and upsampling operation is implemented as 2x bilinear interpolation.



2. Ablation Study
2.1. Alternating Optimization vs. Joint Optimization

Fig. s2 provides several failure cases of SelfDeblur-A. It can be seen that SelfDeblur-A may converge to delta kernel and
worse solution, while SelfDeblur-J performs favorably on these cases.

Blurry images SelfDeblur-A SelfDeblur-J
Figure s2: Failure cases of SelfDeblur-A, while SelfDeblur-J performs well.

2.2. Discussion of selecting λ

To determine the choice of λ, different Gaussian noise levels σ = 1×10−3 and 1×10−2 were added to Levin dataset,
where original noise levels of blurry images approach 0. The results are reported in Talbe s3. (1) We tested SelfDeblur with
various λ values, and found that λ=0.1×σ can generally leads to state-of-the-art performance. (2) On original Levin dataset,
SelfDeblur without TV regularizer (i.e., λ=0) achieved better quantitative metrics than SelfDeblur (λ=1×10−6) in Table 3.
Combining (1)&(2), Gk and Gx are sufficient regularizations for blind deconvolution, and TV regularizer improves robustness
for various noise levels.

Table s3: Comparison of SelfDeblur with various λ values on Levin dataset with different noise levels. The noise levels in original dataset approach 0.
Different Gaussian noise levels σ=1×10−3 and 1×10−2 were added to Levin dataset, respectively.

Noise σ Original 1× 10−3 1× 10−2

λ = 1× 0 10−6 10−5 10−4 10−3 0 10−5 10−4 10−3 10−2 0 10−4 10−3 10−2 10−1

PSNR 33.54 33.07 33.23 31.87 27.14 24.28 29.83 30.59 29.44 29.85 23.09 23.99 29.62 29.64 28.75
SSIM 0.9349 0.9313 0.9307 0.9185 0.8322 0.7430 0.8551 0.8788 0.8406 0.8533 0.6899 0.7261 0.8504 0.8338 0.8000

3. Comparison on dataset of Levin et al. [5]
Besides the comparison of deblurring images, we further evaluate the estimated kernels using two metrics, i.e., MSE best

aligned to ground-truth blur kernel kgt and maximum of normalized convolution (MNC) [2],

MNC = max

(
k⊗ kgt

‖k‖2‖kgt‖2

)
.

From Table s4, our SelfDeblur is much superior to the competing methods in terms of both the metrics.

Table s4: Comparison of the blur kernel estimation performance on the dataset of Levin et al.
Krishnan et al. [3] Levin et al. [6] Cho&Lee [1] Xu&Jia [10] Sun et al. [8] Zuo et al. [11] Pan-DCP [7] SelfDeblur

MSE 675.4 307.0 340.8 402.1 254.7 351.9 347.2 149.5
MNC [2] 0.8261 0.8693 0.8635 0.8811 0.9305 0.9042 0.8936 0.9408



In Fig. s3, we compare the deblurring results on #4 kernel, which is the most difficult to handle. The deblurring results by
our SelfDeblur are with finer textures, while the results by the other methods are often over-smoothing.

Blurry images Sun et al. [8] Pan-DCP [7] SelfDeblur

Figure s3: Comparison on Levin et al.’s dataset.



4. Comparison on dataset of Lai et al. [4]
In Fig. s4, we demonstrate comparison results from 5 categories, i.e., Manmade, Natural, People, Saturated and Text. The

images from this dataset are usually with high resolution, so please zoom in the deblurring results to compare texture details.

Blurry images Xu&Jia [10] Pan-DCP [7] SelfDeblur

Figure s4: Comparison on Lai et al.’s dataset. Please zoom in to see texture details.



5. More Results on Real Blurry Images
Here, we present more results on real blurry images. The left is blurry images, and the right presents the estimated blur

kernels and deblurring results by our SelfDeblur.
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