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In this supplementary material we provide a description
of the initial sample generation, referred in section 3.1 in the
paper. We also provide more detailed quantitative results
and ablative analysis of parameters.

1. Initial sample generation

In the first frame of the sequence, we train the target
model on the initial dataset M0, created from the given tar-
get mask y0 and the extracted features x0. To add more va-
riety in the initial frame, we generate additional augmented
samples. Based on the initial label y0, we cut out the target
object and apply a fast inpainting method [3] to restore the
background. We then apply a random affine warp and blur
before pasting the target object back onto the image, creat-
ing a set of augmented images Ĩk and corresponding label
masks ỹk. After feature extraction, we insert the unmodi-
fied first frame and the augmented frames into the dataset
M0 = {(x̃k, ỹk, γk)}K−1

k=0 and set the sample weights γk
such that the original sample carries twice the weight of the
other samples. Example augmentations performed in the
initial frame are shown in Figure 1.

Figure 1. Example of data augmentation for the initial sample gen-
eration with the image (top row) and corresponding label mask
(bottom row). The original first frame sample is shown to the left
and the augmented samples follows from left to right.

2. Detailed Quantitative Results

In this section we report some additional quantitative re-
sults.

∗Authors contributed equally.

G J F
Method overall seen | unseen seen | unseen data

Ours 72.1 72.3 | 65.9 76.2 | 74.1 100%
Ours 70.6 71.4 | 63.7 75.5 | 71.8 50%
Ours 66.7 69.7 | 58.5 73.0 | 65.6 25%
Ours D-only 59.9 60.1 | 57.0 58.6 | 63.8 0%

Table 1. YouTubeVos 2018 test-dev results for different amount of
training data, sample. Ours with 100% data is the same instance as
in the comparison in Table 2 in the main paper. The Ours D-only
is our approach without the segmentation network as described in
Section 5.1 in the main paper. It thus requires no training data at
all.

2.1. Training data

We analyze how the amount of training data impacts the
performance of our approach. For this purpose we train our
model on subsets of the YouTube-VOS training set contain-
ing 100%, 50%, 25% and 0% of the YouTube-VOS 2018
training split (excluding the validation split used to analyz-
ing our approach as in Section 4 in the paper). For the
version using 0% of the data, called “Ours D-only”, we
only apply or target appearance model, which is trained
during inference, thus requiring no offline training. As
shown in Table 1, the performance improves as we increase
the amount of training data from 0 to 100 percent of the
YouTubeVOS training split. Already at 25 percent our ap-
proach outperforms recent methods such as AGAME [2]
(see Table 2 in the paper). At 50 percent, our approach sur-
passes all compared methods in Table 2 in the paper, that
are trained only on the full YouTube-VOS training set. Re-
markably, our target model without the segmentation (Ours
D-only), consisting of a linear filter that requires no pre-
training, obtains a G-score superior to the methods OS-
VOS [1], OnAVOS [5] and the recent RVOS [4] (see Table 2
in the paper).
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2.2. Algorithm runtime analysis

We investigate the runtime for the different steps in our
proposed VOS approach in Algorithm 1 in the main pa-
per. All runtimes have been computed by averaging over
the DAVIS 2016 evaluation split.

Figure 2 shows how execution in frame 1 (the init phase,
steps 1 and 2 in Algorithm 1) changes vs the size of the
initial sample memory (or dataset) M0, when segmenting
a single object. We present relative runtimes of the maxi-
mum time spent using all steps with |M0| = 20 The time
spent during data augmentation is dominated by the inpaint-
ing which is performed only once, on the first frame, and
hence it is appears constant.

Figure 3 shows how execution in frames 2 and onward
(the forward phase, steps 4-9 in Algorithm 1) when fix-
ating |M0| = 20 and varying the maximum dataset size
Kmax. Again, we present timings in relation to the full ex-
ecution time using |M| = 80. Note that most DAVIS 2016
videos are only a few seconds long and will never fill M
entirely. This will reduce the apparent runtimes for large
dataset sizes.

Figure 2. Initialization runtime (frame 1), relative to the initial
dataset size |M0| = 20 with a fixed maximum dataset size
Kmax = 80 (section 3.4).

In addition, Table 2 shows the distribution of average
time spent on each step in one frame in the forward phase.
This is in the steady-state situation, after the sample mem-
ory is filled (here |Mi| = 80), averaged over the last ts = 8
frames of the sequence.

Since the DAVIS videos are quite short, the init phase
accounts for 41 percent of the total runtime when evaluat-
ing the Ours variant on DAVIS2016. On a per video basis,
the initialization requires between 31 (for “cows” with 104
frames) and 60 percent (for “car-shadow” with 40 frames)
of the total runtime.
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Figure 3. Per-frame (forward phase) runtime relative to the maxi-
mum dataset size Kmax = 80 with a fixed initial size |M0| = 20.

Algorithm step Percent

4. Feature extraction 24.0
6. Segmentation 10.0
9. Target model update training 65.5
Other 0.6

Table 2. Distribution of time spent on steps in the frame loop of al-
gorithm 1. The target prediction (step 5) is wrapped into “Other”.

From figure 2, we conclude that the first-frame initial-
ization (algorithm steps 1-2) scales approximately linearly
with |M0|. The per-frame (forward phase) processing (Al-
gorithm 1 steps 3-9) is dominated by the model update train-
ing and feature extraction. Theoretically, the complexity of
both phases scale linearly with the number of iterations in
their respective optimization steps (step 2 and 9) as well as
linearly with the number of targets.

2.3. Parameter sensitivity

Figure 4 reports the mean J as functions of the memory
learning rate η and target model update interval ts (defined
in Section 3.4 in the paper). The experiments are performed
on the YouTubeVOS validation split, defined in Section 4 in
the paper. It is apparent that the method is rather insensitive
to either parameter.

In addition, Table 3 shows the mean J as functions of the
size of the initial training dataset M0. We test two variants
of our method, one trained on YouTubeVOS data and one
trained on both YouTubeVOS and DAVIS data. We evaluate
on our own YouTubeVOS validation split and the DAVIS
validation set. We observe that the YouTubeVOS evaluation
is insensitive to the choice of |M0|. While still achieving a
competitive J -score without initial data augmentation, our
approach obtains the best performance using four additional
augmented samples in M0.
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Figure 4. Mean intersection-over-union results on our
YouTubeVOS validation split (defined in Section 4), as a
function of the memory update rate η and retraining interval ts
hyper parameters, detailed in section 3.4.

|M0|
Method Eval 1 5 10 20

Ours (yt) ytv 71.5 71.4 71.2 71.4
Ours (yt+dv) dvv 69.4 73.8 72.6 73.1

Table 3. The influence on mean J with varying |M0| during in-
ference. We test two variants, trained on either YouTubeVOS only
(yt) or both YouTubeVOS and DAVIS2017 (yt+dv17). Results
shown are from evaluating on our YoutubeVOS validation split
(ytv) and the DAVS2017 validation split (dvv).
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