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A. Parameters of retrieval experiments
In all experiments we used the ADAM optimizer with a

weight decay value of 4 × 10−4 and batch size 128. All
experiments ran at most 80 epochs with a learning rate drop
by 70% after 35 epochs and a batch memory of length 3.
We used higher learning rates for the embedding layer as
specified by defaults in Cakir et al. [5].

We used a super-label batch preparation strategy in
which we sample a consecutive batches for the same super-
label pair, as specified by Cakir et al. [5]. For the In-shop
Clothes dataset we used 4 batches per pair of super-labels
and 8 samples per class within a batch. In the Online Prod-
ucts dataset we used 10 batches per pair of super-labels
along with 4 samples per class within a batch. For CUB200,
there are no super-labels and we just sample 4 examples
per classes within a batch. These values again follow Cakir
et al. [5]. The remaining settings are in Table 1.

Online Products In-shop CUB200

lr 3× 10−6 10−5 5× 10−6

margin 0.02 0.05 0.02
λ 4 0.2 0.2

Table 1: Hyperparameter values for retrieval experiments.

B. Proofs
Lemma 1. Let {wk} be a sequence of nonnegative weights
and let r1, . . . , rn be positive integers. Then

∞∑
k=1

wk|{i : ri ≥ k}| =
n∑

i=1

W (ri), (1)

where

W (k) =

k∑
i=1

wi for k ∈ N. (2)

Note that the sum on the left hand-side of (1) is finite.

Proposition 2. Let wK be nonnegative weights for K ∈ N
and assume that Lrec is given by

Lrec(y,y
∗) =

∞∑
K=1

wK L@K (y,y∗). (3)

Then

Lrec(y,y
∗) =

1

| rel(y∗)|
∑

i∈rel(y∗)

W (ri), (4)

where W is as in (2).

Proof. Taking the complement of the set rel(y∗) in the def-
inition of L@K , we get

L@K (y,y∗) =
|{i ∈ rel(y∗) : ri ≥ K}|

| rel(y∗)|
, (5)

whence (3) reads as

Lrec(y,y
∗) =

1

| rel(y∗)|

∞∑
k=1

wK |{i : ri ≥ K}|.

Equation (4) then follows by Lemma 1.

proof of Lemma 1. Observe that wk = W (k) −W (k − 1)
and W (0) = 0. Then

n∑
i=1

W (ri) =

∞∑
k=1

W (k)|{i : ri = k}|

=

∞∑
k=1

W (k)
∣∣{i : ri ≥ k} \ {i : ri ≥ k + 1}

∣∣
=

∞∑
k=1

W (k)|{i : ri ≥ k}|

−
∞∑
k=1

W (k − 1)|{i : ri ≥ k}|

=

∞∑
k=1

(
W (k)−W (k − 1)

)
|{i : ri ≥ k}|

=

∞∑
k=1

wk|{i : ri ≥ k}|

and (1) follows.

Proof of (20). Let us set wk = log(1 + 1/k) for k ∈ N.
Then from Taylor’s expansion of log we have the desired
wk ≈ 1

k and

W (k) =

k∑
i=1

log

(
1 +

1

i

)

= log

(
k∏

i=1

1 + i

i

)
= log(1 + k).



If we set

wk = log

(
1 +

log
(
1 + 1

k

)
1 + log k

)
, for k ∈ N

then, using Taylor’s expansions again,

wk ≈
log
(
1 + 1

k

)
1 + log k

≈ 1

k log k

and

W (k) =

k∑
i=1

log

(
1 +

log
(
1 + 1

k

)
1 + log k

)

= log

(
k∏

i=1

1 + log(1 + i)

1 + log i

)
= log

(
1 + log(1 + k)

)
.

The conclusion then follows by Proposition 2.

C. Ranking surrogates visualization
For the interested reader, we additionally present visu-

alizations of smoothing effects introduced by different ap-
proaches for direct optimization of rank-based metrics. We

display the behaviour of our approach using blackbox dif-
ferentiation [60], of FastAP [4], and of SoDeep [10].

In the following, we fix a 20-dimensional score vector
w ∈ R20 and a loss functionLwhich is a (random but fixed)
linear combination of the ranks ofw. We plot a (random but
fixed) two-dimensional section of R20 of the loss landscape
L(w). In Fig. 2a we see the true piecewise constant func-
tion. In Fig. 2b, Fig. 2c and Fig. 2d the ranking is replaced
by interpolated ranking [60], FastAP soft-binning ranking
[4] and by pretrained SoDeep LSTM [10], respectively. In
Fig. 1a and Fig. 1b the evolution of the loss landscape with
respect to parameters is displayed for the blackbox ranking
and FastAP.
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(a) Ranking interpolation by [60] for λ = 0.2, 0.5, 1.0, 2.0.

(b) FastAp [4] with bin counts 5, 10, 20, 40.

Figure 1: Evolution of the ranking-surrogate landscapes with respect to their parameters.



(a) Original piecewise constant landscape (b) Piecewise linear interpolation scheme of [60] with λ = 0.5

(c) SoDeep LSTM-based ranking surrogate [10] (d) FastAP [4] soft-binning with 10 bins.

Figure 2: Visual comparison of various differentiable proxies for piecewise constant function.


