
Supplementary Material
Cloth in the Wind: A Case Study of Physical Measurement through Simulation
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The supplementary material has the following content:

• Section 2 and Algorithm 1: Formalization of the
batched version of the spectral decomposition layer.
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real wind speed measurements and video recordings.

• Section 4: Details on the video data augmentation and
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• Section 5 and Figure 4: Additional experiments on
refined measurements for the hanging cloth dataset and
details on our ClothSim dataset.

• Table 1: Supplement to Table 2 in the main paper with
wind speed regression results on our FlagSim dataset.

• Figure 3: Supplement to Figure 8 in the main paper to
include more refined measurement examples.

• Listing 1, Listing 2 and Listing 3: Specification of
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and cloth simulations.
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2. Spectral Decomposition Layer
To support Section 4.3 in the main paper, we formalize

the batched version of the spectral decomposition layer in
Algorithm 1. Given a batch of video clips as input, our
spectral layer applies the discrete Fourier transform along
the temporal dimension to compute the temporal frequency
spectrum. From the periodogram, we can select the top-
k strongest frequency responses and their corresponding
spectral power. The resulting frequency maps and power
maps all have the same dimensions and can, therefore, be
stacked as a multi-channel image. These tensors can be
further processed by standard 2D convolution layers to learn
frequency-based feature representations. The proposed layer
is efficiently implemented in PyTorch [6] to run on the GPU
using the torch.irfft operation. The source code is
available through the project website.

Algorithm 1 Spectral Decomposition Layer
1: Input. Video tensor x of shape [Nb,C,Nt,H,W]
2: Input. Number of frequency peaks to select, k
3: Output. Decomposition of shape [Nb,2kC,H,W]

4: procedure SpectralDecompositionLayer(x)
5: Reshape x to [NbCHW,Nt ] to obtain batch of signals
6: Apply a Hanning window to signals
7: Compute the DFT of signals using Eq. 4 (main paper)
8: Compute periodogram of signals I(ω)
9: Select top-k peaks of I(ω) and corresponding ω’s
10: P← top-k peaks of I(ω) reshaped to [Nb, kC,H,W]
11: Ω← corresponding ω’s reshaped to [Nb, kC,H,W]
12: return P,Ω
13: end procedure

3. Real-World Flag Dataset Acquisition
We here describe our data acquisition to obtain real-world

wind speed measurements serving as ground-truth for our
final experiment. To accurately gauge the wind speed next to
the flag, we have obtained two anemometers:

• SkyWatch BL-400: windmill-type anemometer

• Testo 410i: vane-type anemometer

The measurement accuracy of both anemometers is 0.2 m s−1.
To verify the correctness of both anemometers, we have
checked that both wind meters report the same wind speeds
before usage. After that, we use the SkyWatch BL-400
anemometer for our measurements as it measures omnidirec-
tional which is more convenient. We hoisted the anemometer
in a flag pole such that the wind speeds are measured at
the same height as the flag. Wind speed measurements are
recorded at 1 second intervals and interfaced to the computer.
In Figure 1 we display an example measurement and report
the dataset’s wind speed distribution. For the experiments
(Section 6, main paper, last section), we randomly sample
video clips of 30 consecutive frames from our video record-
ings and consider the ground-truth wind speed to be the
average over the last minute. This procedure ensures that
small wind speed deviations and measurement errors are
averaged out over time.

To capture the videos, we use a Panasonic HC-V770 video
camera. The camera records at 1920 × 1080 at 60 frames
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per second. We perform post-processing of the videos in the
following ways. Firstly, we temporally subsample the video
frames at 25 fps such that the clips are in accordance with the
frame step size in the physics simulator. Moreover, we assert
that the video recordings are temporally aligned with the
wind speed measurements using their timestamps. Secondly,
wemanually crop the videos such that the curling flag appears
in the approximate center of the frame. After this, the frames
are spatially subsampled to 300 × 300, again in agreement
with animations obtained from the render engine.

4. Training Details
Data Augmentation. The examples in the FlagSim dataset
are stored as a sequence of 60 JPEG frames of size 300×300.
During training, when using less than 60 input frames (30 is
used in all experiments), we randomly sample Nt successive
frames from each video clip. This is achieved by uniform
sampling of a temporal offset within the video. After this,
for the sampled sequence of frames, we convert images to
grayscale, perform multi-scale random cropping and apply
random horizontal flipping [8] to obtain a Nt × 1× 224× 224
input clip. Finally, we subtract the mean and divide by the
standard deviation for each video clip.

OptimizationDetails. We train all networks using stochastic
gradient descent with Adam [4]. We initialize training with a
learning rate of 10−2 and decay the learning rate with a factor
10 after 20 epochs. To prevent overfitting, we utilize weight
decay of 2 · 10−3 for all networks. Training continues until
validation loss plateaus – typically around 40 epochs. Total
training time for our spectral decomposition network is about
4 hours on a single Nvidia GeForce GTX Titan X. When
training the recurrent models [3, 10] we also perform gradient
clipping (max norm of 10) to improve training stability.

5. Experiments on Hanging Cloth Video
Our real-world flag dataset enables us to evaluate our

method’s measurement performance of external parameters
(vw ∈ θe). However, the cloth’s internal parameters are
unknown and cannot be evaluated beyond visual inspection.
Therefore, we also perform experiments on the hanging cloth
dataset of Bouman et al. [2]. The authors have carefully
determined the internal cloth material properties, which we
can leverage for quantitative evaluation of our simulated-
refined measurements. Specifically, we assess our method’s
ability to measure the cloth’s area weight (kg m−2). The
method is identical to that explained in the main paper with
its results presented in the final experiment of Section 6.
However, we retrain the embedding function sφ(x) on a
dataset of hanging cloth simulations, which we refer to
as ClothSim. In this section, we will briefly discuss the
characteristics of this dataset and report experimental results.

Table 1. External wind speed prediction from simulation. We
regress the wind speed (vw ∈ θe) on our FlagSim dataset. The
metrics are computed over the 3.5K test examples. Target ve-
locities range from 0 m s−1 (no wind) to 10 m s−1 (strong wind).
Experimental setup is identical to Table 2 in the main paper.

Model Input Modality RMSE ↓ Acc@0.5 ↑

Yang et al. [10] 10 × 227 × 227 0.380 0.620
Cardona et al. [3] 30 × 227 × 227 0.271 0.580
ResNet-18 1 × 224 × 224 0.381 0.615
ResNet-18 10 × 224 × 224 0.264 0.734
ResNet-18 20 × 224 × 224 0.207 0.775

SDN (ours) 20 × 224 × 224 0.183 0.813
SDN (ours) 30 × 224 × 224 0.180 0.838

ClothSim Dataset. Following the same procedure as for
the FlagSim dataset, we additionally generate a dataset of
simulated hanging cloth excited by a constant wind force.
The main difference between the FlagSim dataset is the
wider variety of cloth material. Specifically, we use all the
materials presented in [7] available in ArcSim. The increased
diversity allows us to model the dynamics in real-world
hanging cloth recording [2]. Our dataset shares similarity
with the simulated hanging cloth dataset of [10]. However,
in their work, the dataset is employed to train a classifier for
predicting the material class. In Listing 2 and Table 2 we
present an exhaustive overview of the simulation and render
parameters that were used for generating the dataset.

Real-world Parameter Refinement (θi,θe). Given the em-
bedding function sφ(x) trained on ClothSim using contrastive
loss, we run our refinedmeasurement experiment on the hang-
ing cloth dataset of Bouman et al. [2]. Our goal is to measure
the cloth’s area weight as we have access to its ground-truth
measurement. Unlike for our real-world flag dataset, we
do not know the true wind speed beyond the setting of the
industrial fan that was used for exciting the fabric artificially.
In Figure 4 we report the results for 3 randomly sampled
real-world videos.
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Figure 1. Top: Example of the time-varying wind speed as obtained by the SkyWatch BL-400 anemometer positioned directly next to the
video-recorded flag. The wind speed is sampled at 1 Hz and interfaced to a computer using bluetooth. For our final experiment, we sample
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Figure 4. Results for our hanging cloth refined-measurements for a random target video capturing the hanging cloth as recorded by
Bouman et al. [2]. The five images are the center frames of the real-world target video (left) and simulations throughout the refinement
process after t = 0,10,20,40 optimization steps. Optimization is performed over all 16 intrinsic cloth parameters θi and 1 external wind
speed θe. We plot the estimated cloth material area weight (kg m−2) and wind speed velocity (m s−1), although we only have access to the
true material area weight (dashed horizontal line). For this dataset, the wind speed has three settings of increasing wind speed: W1, W2 and
W3. Top row: The cloth’s true area weight is 0.17 kg m−2 while the final measurement attains 0.22 kg m−2 after only 10 iterations. Center
row: The cloth’s true area weight is 0.24 kg m−2 while the prediction is 0.29 kg m−2. While the ground-truth wind speed is not known, the
wind speed in the simulations seems like an underestimate. Top: A heavier cloth at 0.39 kg m−2 while the simulation measures 0.45 kg m−2.
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Figure 3. Additional results for our FlagReal refined-measurements for a random target video capturing the flag in the wind (corresponding
to Figure 8 in the main paper). The five images are the center frames of the real-world target video (left) and simulations throughout the
refinement process after t = 0,10,20,40 optimization steps. Optimization is performed over all 16 intrinsic cloth parameters θi and 1 external
wind speed θe. We only visualize the simulated wind speed as it is the only parameter for which we have ground-truth (dashed line). Top row:
successful optimization example; although the scale between real observation and simulation is different, our method is able to precisely
determine the external wind speed. The real-world video has a ground-truth wind speed of 2.46 m s−1 while the refinement procedure finds a
wind speed of 2.34 m s−1 in less than 10 optimization steps. Center row: Another successful optimization example. The real-world video
has a ground-truth wind speed of 2.96 m s−1 while the refinement procedure finds a wind speed of 2.36 m s−1 after 45 refinement steps.
Bottom row: failure case; even though after 45 steps the wind speed is approximately correct, the optimization procedure has not converged.



Listing 1. The ArcSim base configuration for flags [5] as JSON file to be read by the simulator. The simulation
runs on a flag mesh of 3 : 2 aspect ratio in a constant wind field defined by the wind speed θe parameter. During
simulation we only consider a wind field in a single direction, but during rendering we use multiple relative camera
orientations creating the appearance of varying wind directions. The intrinsic cloth material parameters θi reside
inside the material configuration file (Listing 3).

1 {
2 "frame_time": 0.04,
3 "frame_steps": 8,
4 "duration": 20,
5 "cloths": [{
6 "mesh": "meshes/flag.obj",
7 "transform": {
8 "translate": [0, 0, 0],
9 "rotate": [120, 1, 1, 1]

10 },
11 "materials": [{
12 "data": "materials/camel-ponte-roma.json",
13 "thicken": 2,
14 "strain_limits": [0.95, 1.05]
15 }],
16 "remeshing": {
17 "refine_angle": 0.3,
18 "refine_compression": 0.01,
19 "refine_velocity": 1,
20 "size": [20e-3, 500e-3],
21 "aspect_min": 0.2
22 }
23 }],
24 "handles": [{
25 "nodes": [0,3]
26 }],
27 "gravity": [0, 0, -9.81],
28 "wind": {
29 "velocity": [wind_speed, 0, 0]
30 },
31 "magic": {
32 "repulsion_thickness": 10e-3,
33 "collision_stiffness": 1e6
34 }
35 }



Listing 2. The ArcSim base configuration for hanging cloth as JSON file to be read by the simulator. The wind
speed is defined on the horizontal plane (x and y components). Again, the starting point of the intrinsic cloth
material parameters θi are given in Listing 3. However, in comparison to the flag simulations, we set a much larger
variety of fabrics and define the fabric area weight range to correspond to the hanging cloth dataset [2].

1 {
2 "frame_time": 0.04,
3 "frame_steps": 8,
4 "duration": 20,
5 "cloths": [{
6 "mesh": "meshes/square.obj",
7 "transform": {
8 "translate": [0, 0, 0],
9 "rotate": [120, 1, 1, 1]},

10 "materials": [{
11 "data": "materials/camel-ponte-roma.json",
12 "thicken": 1,
13 "strain_limits": [0.95, 1.05]
14 }],
15 "remeshing": {
16 "refine_angle": 0.3,
17 "refine_compression": 0.01,
18 "refine_velocity": 1,
19 "size": [20e-3, 500e-3],
20 "aspect_min": 0.2
21 }
22 }],
23 "motions": [],
24 "handles": [{"nodes": [2,3]}],
25 "gravity": [0, 0, -9.8],
26 "wind": {"velocity": [wind_speed_x, wind_speed_x, 0]},
27 "magic": {"repulsion_thickness": 10e-3, "collision_stiffness": 1e6}
28 }



Listing 3. TheArcSimmaterial configuration [5] as JSON file to be consumed by the simulator. As base material,
we use “camel ponte roma” with its properties determined in the mechanical setup by [7]. This file specifies the
cloth’s area weight, bending stiffness coefficients and stretching coefficients. As flags are of strong, weather-resistant
material, we optimize over the area weight (1×) and bending parameters (15×). Together these 16 parameters define
θi . For hanging cloth, we also keep the bending parameters fixed to constrain the number of free parameters.

1 {
2 "density": 0.135,
3 "bending": [
4 [36.3483e-6, 49.5855e-6, 45.7440e-6, 47.4133e-6, 20.7266e-6],
5 [33.0132e-6, 29.7443e-6, 35.1036e-6, 34.0410e-6, 14.4399e-6],
6 [37.1575e-6, 34.1074e-6, 33.2294e-6, 34.6855e-6, 10.4399e-6]
7 ],
8 "stretching": [
9 [31.146198, -12.802702, 44.028667, 31.896357],

10 [78.707756, 26.754574, 268.680725, 27.743423],
11 [67.368431, 77.767944, 182.273407, -14.661531],
12 [113.367035, 54.802021, 175.126572, 44.657330],
13 [144.294830, 111.404854, 138.422150, -29.861851],
14 [143.933365, 49.654823, 191.777588, 39.491055]
15 ]
16 }

Table 2. Exhaustive overview of the render parameters ζ for rendering the FlagSim and ClothSim datasets.

Name Description Value/Range (Flags) Value/Range (Cloth)

background_image Background image of scene Sampled from SUN397 [9]
background_offset Background image translation ∼ Uniform(−20,+20)
background_scale Background image scale ∼ Uniform(0.6,1.0)

sun_height The sun’s height above the ground plane ∼ Uniform(4,10)
sun_radius The sun’s distance to mesh ∼ Uniform(0, 5)
sun_strength The sun’s illumination strength ∼ Uniform(2,10)
sun_shadow_soft_size The sun’s shadow hardness ∼ Uniform(2,10)

cycles_samples Cycles [1] number of render samples 50
cycles_bounces Cycles [1] light bounces, object dependent [0,6]

camera_height The height above the ground plane ∼ Uniform(0.2,3) ∼ Uniform(0.5,2)
camera_radius The distance to the mesh ∼ Uniform(4,6) ∼ Uniform(1,2.5)
camera_angle The orientation w.r.t. wind direction ∼ Uniform(−15,+15) ∼ Uniform(−5,+5)

mesh_height The flag’s height above the ground plane 4.6 2
mesh_aspect_ratio The flag’s aspect ratio 3 : 2 1 : 1
mesh_texture The flag/cloth texture Sampled from 12 countries Sampled from [10]


