
Supplemental Material for FroDO: From Detections to 3D Objects

a: Bad: small BB b: Bad: occlusion c: Bad: overlap d: Good

Figure 1: Several examples on bad 2D detection bounding box filtered out by the projection of 3D bounding box. The red
and green box are 2D detected bounding box and the projection of the 3D bounding box respectively

1. Detection Pruning

After estimating the bounding box of an object, good
views are selected by employing a pruning scheme. This
scheme uses three criteria to reject frames based on (1)
bounding box size, (2) occlusions and (3) overlap with other
objects. (1) is implemented via a threshold on the width and
height of the bounding box (BB), and (2,3) are implemented
using a threshold on the intersection over union (IoU) of
the bounding boxes. Figure 1 illustrates these strategies.
The selection helps to identify better initial detections to ex-
tract good shape codes and later on leads to an optimization
with clean energy terms. An ablation study on the detection
pruning on Redwood-OS dataset is demonstrated in Table 1.

2. DP-means-based Line Segment Clustering

DP-mean clustering is similar to K-mean clustering as
it also runs in an Expectation-Maximization manner. A
key difference is that the total number of cluster is un-
known at first. A new cluster is generated when the dis-
tance between a line segment and any existing clusters is
larger than a cluster penalty threshold, which we set to
0.4. The distance we used is euclidean point (cluster)
to line segment distance. Algorithm 1 details each steps.

Algorithm 1: DP-mean clustering for 3D line seg-
ments

Input: r1, r2, ..., rn : n rays, λ :
cluster penalty threshold

Output: c1, c2, ..., cm : m object clusters
1. init. µ1 = mid(r1), mid() is to compute the
middle point of a ray;

2. while not converged do
for each ri do

dij = min
µ1...k

dist(µk, ri);

if dij ≥ λ then
set k = k + 1;
µk = mid(ri);

else
zi = j;

end
end
k clusters are generated, where
ck = {ri|zi = k};

for each ci do
µi = lstsq(ck);

end
end

1



Method Vote Average

CD [cm] w/o occlusion filter 12.17 11.73
CD [cm] w/ occlusion filter 11.97 10.57

Table 1: Ablation study on using the inferred 3D bounding
box to filter occluded views.

3. Dense Shape Code Optimization
In order to implement the dense optimization efficiently,

certain measures were taken to achieve an effective opti-
mization procedure. The following two sections explain de-
cisions for the formulation of analytical partial derivatives
and for the implementation these.

3.1. Analytical Partial Derivatives

As the DeepSDF decoder yields signed distance values,
in contrast to the pointcloud decoder which outputs ob-
ject coordinates, neither Eg nor Ep are explicitly defined.
Therefore, dense object coordinates are extracted by sam-
pling the zero-crossing of the distance field and deriving
relevant Jacobians analytically. While most of the deriva-
tives of Ep and Eg wrt. code and pose follow the chain rule,
the relevant term ∂x

∂z = ∂x
∂fθ

∂fθ
∂z needs more attention.

Intuitively, the change of a surface coordinate x with re-
spect to a change in code z is ambiguous due to potential
changes in topology. However, as shown by [1] it is possi-
ble to derive a first-order approximation as follows. Given
xt as a function of code z on the surface at time t, it is given
that corresponding distance value remains constant at the
zero-crossing, implying:

x0 = x(z0) (1)

0 =
∂fθ(x(z), z)

∂z

∣∣∣∣
t=0

(2)

Using the multivariate chain rule, and solving for ∂x
∂fθ

,
yields:

∂x

∂fθ

∣∣∣∣
t=0

= −∂fθ
∂x

−1 ∂fθ
∂z
≈ −~n∂fθ

∂z
(3)

Where ~n is the surface normal. Since the decoder is differ-
entiable, ∂x

∂z can be calculated easily using this first-order
approximation. Figure 2 visualizes ∂fθ∂z for 9 different shape
code components and demonstrates that many parts of an
object are affected, when a single component changes.

3.2. Implementation Details

Multiple techniques are employed in order to speed up
the dense optimization stage. Since executing the network
is the most expensive step in the optimization, the number

Figure 2: Visualization of ∂fθ
∂z for 9 different code com-

ponents, demonstrating shape changes when single compo-
nents change. Red (positive values) indicates an intrusion,
while blue (negative values) indicates an extrusion.

of forward and backward passes are kept to a minimum.
At the beginning of each iteration the DeepSDF volume is
sampled with an adaptive resolution. First, on a dense grid
with a distance of δ between samples along a every dimen-
sion and afterwards at a higher resolution for voxels close
the object boundary, i.e. when −δ < fθ < δ, where δ is the
DeepSDF truncation factor as described by Park et al. [7].
A mesh corresponding to the current code estimate is then
obtained by running marching cubes [2] on the samples and
used as a proxy for the current state. Each vertex contains
∂fθ
∂x and ∂fθ

∂z and as a result data required to minimize the
energy in Eq. 3 is generated by rendering the mesh to ob-
served detections and is independent of sampling. Raster-
ized mesh data is directly copied from OpenGL to CUDA
for the optimization.

Further, a pyramid scheme is implemented which aids
convergence when starting from a bad initialization, im-
proves run-time and reduces the memory footprint of the
optimization. For every detection with width w and height
h, only pyramid levels l with a bounded shape (r2min <
w·h
4l

< r2max) are considered. In our experiments, rmin and
rmax are always 40 and 400 respectively.

4. Network Architecture and Training

4.1. Decoder for Joint embedding

The shared joint embedding is with 64 dimensions. The
network is split into two independent branches for point



Figure 3: Interpolation of shape codes from different
classes.

cloud and DeepSDF respectively. The point cloud branch
is composed of four fully connected layers each with 512,
1024, 2048, 2048× 3 as output dimensions. We use ReLU
as a nonlinear activation function followed by each fully
connected layers except for the last one. Readers can re-
fer to [7] for detailed network architecture for the DeepSDF
branch. The joint autodecoder is trained for 2000 epochs
with a batch size of 64. There are 16384 SDF samples for
each shape. The learning rate for network parameters and
latent vectors are 5 · 10−3, and 10−3 respectively, decayed
by 0.5 for every 500 epochs.

4.2. Encoder Network

After we train the decoder network as described in Sec.
4.1, we obtain a set of embeddings z ∈ R64 for the cor-
responding CAD models. In the second stage, we train an
encoder network that maps an image to the latent code. We
tailor ResNet50 to output a vector of dimension 64 and ini-
tialize the network with pretrained models. We train the
network for 50 epochs to minimize a Huber loss with a
polynomial decaying learning rate of 10−3. The network
for the embedding is trained in a way similar to Li et al. [4].
However, our deep learning based shape embedding is very
different from the non-parametric embedding used in [4].

5. Latent Space Interpolation
We randomly sample three latent codes in the table and

chair classes respectively. Figure 3 illustrates such an inter-
class interpolation and a demonstrating video is also at-
tached. It can be seen that the shape transition is smooth,
which is suitable for our gradient based optimization. A
second point worth noting is that when decoding a identical
latent code the surfaces represented by the point cloud and
mesh (generated by DeepSDF) are consistent.

6. CAD retrieval on Pix3D dataset
In Fig. 4 we show more examples of CAD model re-

trieval on Pix3D dataset [8]. We find the nearest CAD

Method sec. /iteration # of iteration

PMO [5] 12.59 100
Optim. Dense 4.96 100
Optim. Sparse 0.07 200

Table 2: Speed comparison between PMO [5] and our
method on the same sequence of 60 frames.

model based on Euclidean distance of our shape codes.

7. Dual-Representation Efficiency Gain
One motivation for using a shared code space for a point-

based and SDF-based representation is that the efficiency
of a sparse optimization can be leveraged, while exploiting
richer information when subsequently applying fewer dense
iterations. A comparison of optimization run-time shows
that the pointcloud-based representation is approximately
two orders of magnitude faster than the mesh optimization
used by PMO [5] and DeepSDF [7] as shown in Table 2.

8. Redwood Dataset Augmentation
While Pix3d [8] is a real-world dataset available

for single-view object shape reconstruction, multi-view
datasets with ground truth 3D data are scarce. Previ-
ous multi-view learning based methods primarily evaluate
their methods on synthetic data [5]. We post-process the
Redwood-OS dataset [3] and will release it to facilitate
benchmarking on real-world data. It contains RGBD se-
quences and dense full scene reconstructions. To isolate
object shapes for evaluation, we manually select sequences
that have full 3D object shapes and manually segment them
from the full scene mesh. We run RGBD ORB-SLAM2 [6]
to estimate camera poses.

9. Qualitative results on Redwood-OS dataset
Additional qualitative results on the Redwood-OS

dataset are shown in Figure 5. As in the main paper,
groundtruth, sparse COLMAP, dense COLMAP, our sparse
reconstructions and our dense reconstructions are com-
pared.



Figure 4: From left to right: input image and the nearest CAD models in latent space sorted by distances.



KinectFusion COLMAP (35) COLMAP (350) FroDO (sparse) FroDO (dense)

Figure 5: Comparison of different approaches to object shape reconstruction on some examples from Redwood-OS dataset.



References
[1] M. Atzmon, N. Haim, L. Yariv, O. Israelov, H. Maron, and

Y. Lipman. Controlling neural level sets. In Advances in Neu-
ral Information Processing Systems, pages 2032–2041, 2019.
2

[2] E. Chernyaev. Marching cubes 33: Construction of topologi-
cally correct isosurfaces. Technical report, 1995. 2

[3] S. Choi, Q.-Y. Zhou, S. Miller, and V. Koltun. A large dataset
of object scans. arXiv:1602.02481, 2016. 3

[4] Y. Li, H. Su, C. R. Qi, N. Fish, D. Cohen-Or, and L. J. Guibas.
Joint embeddings of shapes and images via cnn image pu-
rification. ACM transactions on graphics (TOG), 34(6):234,
2015. 3

[5] C.-H. Lin, O. Wang, B. C. Russell, E. Shechtman, V. G. Kim,
M. Fisher, and S. Lucey. Photometric mesh optimization for
video-aligned 3d object reconstruction. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 969–978, 2019. 3

[6] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: an open-source
SLAM system for monocular, stereo and RGB-D cameras.
IEEE Transactions on Robotics, 33(5):1255–1262, 2017. 3

[7] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Love-
grove. Deepsdf: Learning continuous signed distance func-
tions for shape representation. The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 2, 3

[8] X. Sun, J. Wu, X. Zhang, Z. Zhang, C. Zhang, T. Xue, J. B.
Tenenbaum, and W. T. Freeman. Pix3d: Dataset and methods
for single-image 3d shape modeling. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. 3


