
Appendix

Appendix provides details on:

1. Relative Position Encoding (Section A)
2. ActivityNet-SRL construction and statistics (Section B)
3. Evaluation Metrics (Section C)
4. Implementation Details (Section D)
5. Additional Experiments (Section E)
6. Visualizations (Section F)

A. Relative Position Encoding Discussion

In this section, we describe the challenges of using relative
position encoding, followed by an overview of the method used
in [54] and finally show how we adapt their formulation to our
setting. For an overview of the technical details of the Trans-
former [61], we refer to the following well-written blogs “The
Annotated Transformer”2, “The Illustrated Transformer”3, “Trans-
formers From Scratch”4.

In general, Transformer performs self-attention with multiple
heads and multiple layers. For a particular head, to compute self-
attention, it derives the query Q, key K and value V from the input
X itself as follows:

Q = WqX K = WkX V = WvX (A.1)

Using the derived Q,K, V triplet, it assigns new values to each
input X using attention A given by

A(Q,K, V ) = SoftMax
(
QKT

√
dz

)
V (A.2)

Here Q,K, V are each of shape B×T × dz where B is the batch
size, T is the sequence length, and dz is the dimension of each
vector. The attention A can be computed efficiently using batch
matrix multiplication since the multiplication QKT and the sub-
sequent multiplication with V have the common B × T . For in-
stance, when computing QKT we perform batch matrix multipli-
cation with B × T × dz and B × dz × T resulting in B matrix
multiplications to give B × T × T matrix.

Since the attention mechanism itself doesn’t encode the posi-
tions of the individual T vectors, it is insensitive to the order of
the T inputs. To address this, a position encoding is added to each
of the T inputs to make the transformer dependent on the order of
inputs. [54] follows up by using an additional relative position en-
coding. They define two new matrices aK

i,jand aV
i,j (both of shape

B × T × T × dz) and change the attention equation as follows:

A(Q,K, V ) = SoftMax

(
Q(KT + aK

i,j)√
dz

)
(V + aV

i,j) (A.3)

As [54] notes, this removes the computation efficiency in the
original transformer due to computation of aK

i,j for all pairs, and
more importantly, the efficient batch matrix multiplication cannot

2https://nlp.seas.harvard.edu/2018/04/03/attention.html
3http://jalammar.github.io/illustrated-transformer/
4http://www.peterbloem.nl/blog/transformers

be used due to addition of aK
i,j to K making it of shape B × T ×

T × dz . To resolve this, they propose the following equivalent
formulation for computing QKT (similarly for multiplying V ):

Q(KT + aK
i,j) = QKT + QaK

i,j (A.4)

Such formulation removes the additional time to compute K+aK
i,j

which would otherwise be a major bottleneck.

There are two related challenges in adopting it to the visual
domain: (i) the positions are continuous rather than discrete (ii)
both aK

i,j and aV
i,j have dz dimension vector which is highly over-

parameterized version of the 5d position vector (dz � 5). To
address (i) we use aMp (MLP) to encode the 5d position which
is a reasonable way to encode continuous parameters. For (ii) we
change Eq. A.3 as

A(Q,K, V ) = SoftMax
(
QKT + ∆√

dz

)
V (A.5)

Here ∆ is of shape B × T × T same as QKT and ∆ is computed
from the relative positions of two object proposals pi, pj as ∆i,j =
Mp(pi−pj) is a scalar. For added flexibility, we have that ∆i,j ∈
Rnh where nh is the number of heads allowing us to use different
∆ for different heads.

As mentioned in Section 3.3 (of the main paper), the computa-
tion of pi − pj for every pair remains the major bottleneck of our
proposed relative position encoding.

B. Dataset Construction

We derive ActivityNet-SRL from ActivityNet-Entities (AE)
[75] and ActivityNet-Captions (AC) [29] (Section B.1), provide
the train, valid, and test split construction and statistics (Section
B.2), show the distribution of the dataset (Section B.3) and fi-
nally compare ActivityNet against other datasets with object an-
notations (Section B.4).

B.1. Constructing ASRL

We first use a state-of-the-art BERT [10] based semantic role
labeling system (SRL) [55] to predict the semantic roles of the
video descriptions provided in AC. For SRL system, we use the
implementation provided in AllenNLP [15] 5. It is trained on
OntoNotes 5 [46] which uses PropBank annotations [42]. Prop-
Bank annotations are better suited for Verb oriented descriptions.
The system achieves 86.4% on OntoNotes5. To ensure the qual-
ity, we randomly picked 100 samples and looked at the various la-
beled roles. We found a majority of these to be unambiguous and
satisfactory. The few that were not found were removed by the
following heuristics: (i) in a sentence like “Man is seen throwing
a ball”, we remove the “seen” verb even though it is detected be-
cause “seen” verb doesn’t provide any extra information (ii) sim-
ilarly we also remove single verbs like “is”, “was” which are al-
ready considered when some other verb is chosen (iii) finally, in
a small number of cases, no semantic-roles could be found, and
such cases were discarded. In general, each description can con-
tain multiple verbs, in such cases, we treat each verb separately.
Table 1 shows this with an example.

5see https://demo.allennlp.org/semantic-role-labeling for a demo



Sentence: A woman is seen speaking to the camera while holding up various objects and begins brushing her hair.

Verb Semantic-Role Labeling Considered Inputs

is
A woman [V: is] seen speaking to the camera while

holding up various objects and begins brushing her hair. x

seen
A woman is [V: seen] [ARG1: speaking to the camera

while holding up various objects and begins brushing her hair] x

speaking
[ARG0: A woman] is seen [V: speaking] [ARG2: to the camera]

[ARGM-TMP: while holding up various objects]
and begins brushing her hair .

A woman speaking to the camera
while holding up various objects

holding
[ARG0: A woman] is seen speaking to the camera while
[V: holding] [ARGM-DIR: up] [ARG1: various objects]

and begins brushing her hair .

A woman holding up
various objects

begins
[ARG0: A woman] is seen speaking to the camera while holding

up various objects and [V: begins] [ARG1: brushing her hair] x

brushing
[ARG0: A woman] is seen speaking to the camera while holding

up various objects and begins [V: brushing] [ARG1: her hair]
A woman brushing

her hair

Table 1. An example of applying semantic role labeling to the video description. Each verb is treated independent of each other and the
verbs “is”, “seen”, “begins” are not considered. For all other verbs, the last column shows the considered input to the system

Once we have all the SRL annotated, we align them with the
annotations of AE. This is non-trivial due to mis-match between
the tokenization used by AE (which is based on Stanford Parser
[38]) compared to the tokenization used in AllenNLP [15]. Thus,
we utilize the Alignment function provided in spacy v2 [21] to
align the tokens from the two systems. To provide bounding box
information to each role, we look at the tokens within the bound-
aries of the semantic role, and if any of them has been assigned
a bounding box, we mark the semantic-role groundable, and as-
sign it the corresponding bounding box. Figure 2 shows the most
common considered roles followed by Figure 3 depicting the most
common roles which have a bounding box annotations (ground-
able roles). Note that a particular role could be considered mul-
tiple times, e.g. in Table 1 “A woman” is considered for each of
the verbs “speaking”, “holding”, “begins”, “brushing” i.e. some of
the roles (in particular Arg0) are counted more than once. While
some roles like ArgM-TMP and ArgM-DIR appear more often
than ArgM-LOC (see Figure 2), the number of groundable in-
stances for the latter is much higher as locations are generally eas-
ier to localize. Further, note that Verb doesn’t refer to an object
and hence doesn’t have any corresponding bounding boxes.

After having matched the annotated semantic roles with the
bounding box annotations from AE, we lemmatize the arguments
and create a dictionary for efficient contrastive sampling (as de-
scribed in Section 4.2 in the main paper). To obtain the lemmatized
words, we use the object-name annotations given in AE which are
themselves derived from stanford parser [38]. To lemmatize the
verbs, we use the inbuilt lemmatizer in spacy [21].

B.2. Training, Validation, Test Splits

Once the roles and lemmatized words have been assigned, we
need to create a train, validation and test splits.

Train: We keep the same train split as AC, AE, ActivityNet.
This allows using activity classification networks like TSN [62]
trained on ActivityNet.

Validation and Test: Creating the validation and test splits is
non-trivial. Since the test split of AC is kept private, AE uses half
of validation split of AC as its test split which is again kept private.
Thus, we divide the existing validation set into two to create the
validation and test set for ASRL (see Figure 1 for an illustration of
deriving the splits, and Table 2 for the exact numbers).

Dividing the original validation set implies high miss-rate (i.e.
not enough examples to sample contrastive examples). To address
this, we allow contrastive sampling from the test set during valida-
tion and vice-versa during testing for more robust evaluation.

B.3. Dataset Distribution

Figure 4 highlights the distributions of the semantic-role-
structures (i.e. the order of the semantic role labels) found in the
sentences. It is interesting to note Arg0-Verb-Arg1 far outnum-
bers all competing structures. This also motivates the choice of
considering k=4 videos at a time (if structure contains 3 roles, we
can sample 3 more videos).

We look at the total number of lemmatized words in Table 3
and the most frequent (top-20) lemmatized words for each role
with their frequencies: (i) Verb Figure 5 (ii) Arg0 Figure 6 (iii)
Arg1 Figure 7 (iv) Arg2 Figure 8 .

The higher number of verbs (Table 3) shows the diversity in
the caption and their distribution is reasonably balanced (Figure
5) which we attribute to the curation process of ActivityNet [4].
In comparison, Arg0 is highly unbalanced as agents are mostly
restricted to “people”. We also observe that “man” appears much
more often than “woman”/“she”. This indicates gender bias in
video curation or video description. Another interesting observa-
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Figure 1. Train, val and test splits for AC, AE, ASRL.
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Training Validation Testing

AC 37421 17505
AE 37421 8774 8731

ASRL 31718 3891 3914

Table 2. Number of Videos in train, validation, and test splits.
Some instances are removed from training if they don’t contain
meaningful SRLs. Our test split is derived from AE validation set.

tion is that “person” class dominates in each of argument roles
which suggest “person-person” interactions are more commonly
described than “person-object” interactions.
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Figure 4. Frequently appearing SRL-Structures

V Arg0 Arg1 Arg2 ArgM-LOC

338 93 281 114 59

Table 3. Total number of lemmatized words (with at least 20 oc-
currence) in the train set of ASRL.

B.4. Dataset Choice

Existing Datasets: (As of Nov 2019) Other than ActivityNet,
there are three video datasets which have visual and language an-
notations in frames namely EPIC-Kitchens [9], TVQA+ [32] and
Flintstones [18]. We consider the pros and cons of each dataset.

EPIC-Kitchens contains ego-centric videos related to kitchen
activity. It provides object level annotations, with narrative de-
scriptions. While the annotations are rich, the narrative descrip-
tions are too short in length (like “open the fridge” or “cut the
vegetable”) and the actors Arg0 are not visible (ego-centric).

TVQA+ is a question-answering dataset subsampled from
TVQA [31] with additional object annotations. While the videos
are themselves rich in human activities, the questions are heavily
dependent on the sub-titles which diminishes the role of actions.

Flintstones is a richly annotated dataset containing clips from
the cartoon Flintstones. The frames are 2-4 seconds long with 1-
4 sentence description of the scene. With the objects in cartoons
easier to identify it also serves as a diagnostic dataset for video
understanding. However, the provided descriptions are less verb
oriented and more image/scene-oriented due to shorter clips.

In contrast, ActivityNet contains longer videos, as a result the
corresponding descriptions in ActivityNet Captions capture verbs
over an extended period of time. While the object annotations are
richer in EPIC-Kitchens, TVQA+ and Flintstones, the richer verb-
oriented language descriptions make it more suitable for our task.

Using Natural Videos for evaluation: Our test data is gen-
erated “synthetically” by contrastive sampling followed by SPAT
and TEMP strategies. An alternative evaluation protocol would be
to test on naturally occurring videos. We discuss the challenges in
obtaining such a dataset.

Recall that in our formulation of VOG a model needs to under-
stand the relations among various objects prior to localizing them.
For instance, to evaluate if a model understands “man petting a
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dog” (example from Fig 2a Q1,), we need contrastive examples
Q2: “X petting a dog”,Q3: “man X a dog”,Q4: “man petting X”
in the same video. In the absence of any of these examples, it is
hard to verify that the model indeed understands to query. (e.g.
without Q3, “man” and “dog” could be localized without under-
standing “petting”). Creating such a test set from web sources is
impractical at present because there is no large-scale densely an-
notated video dataset to isolate such contrastive videos.

A different (and quite expensive) method would be crowd-

sourcing the video creation process by handing out detailed scripts
to be enacted [56]. Here we would need to perform an addi-
tional “domain adaptation” step since we would be training and
testing on different sources of videos (“YouTube” → “Crowd-
Sourced”). This makes it challenging to attribute the source of
error i.e. whether the reduced performance is due to poor general-
ization of object interactions or due to domain shift in the data.

In practice, SPAT and TEMP strategies when applied to con-
trastive videos from ActivityNet are effective proxies to obtaining
naturally occurring contrastive examples from the web. This is
validated by the drop from SVSQ to SPAT and TEMP (Table 3).

C. Evaluation

We use the following evaluation metrics:

1. Accuracy: correct box is predicted for the given phrase in a
sentence (a sentence has multiple phrases)

2. Strict Accuracy: correct box is predicted for all the phrases
in the sentence

3. Consistency: predicted boxes (for all the phrases) belong to
the same video, even if they are incorrect

4. Video Accuracy: the predicted boxes are consistent, and the
chosen video is also correct.

Since there is only one video in SVSQ, both consistency and



Figure 10. SVSQ: Illustration of the ground-truth annotations for
the “man” (green) obtained from AE. The red boxes show equally
correct boxes for “man” but are not annotated. As a result, we only
consider the third frame to compute accuracy of the predicted box.
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Figure 11. TEMP: Two videos are concatenated along the time
dimension (we show 2 frames from each video) and with the de-
scription “man throwing a ball” and we are considering the object
“man”. If the predicted box is within the same video as ground-
truth but the frame doesn’t have any annotation (red box) we ig-
nore it. However, if the predicted box belongs to another video
(yellow boxes), we say the prediction is incorrect.
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Figure 12. SPAT: Similar to previous case, we have the same de-
scription of “man throwing a ball” and we consider the object
“man” but the videos are concatenated along the width dimension
(we show 2 frames in the concatenated video). Again, if the pre-
dicted box lies in the same video as ground-truth (red box), we
ignore it. If the predicted box is in another video (yellow boxes),
the predictions are deemed incorrect.

video accuracy are not meaningful. Similarly, we first choose a
video in SEP, it is trivially consistent.

As mentioned earlier, the bounding box annotations in AE is
sparse, the object has a bounding box in only one frame in the
video where it is most clearly visible. Since such sparse anno-
tations complicate the computation of the above metrics, we de-
scribe their computation for each case.

C.1. Concatenation Strategies with Examples

SVSQ: We have a video with F frames, however, for each ob-
ject, the bounding boxes are available in exactly one frame. More-
over, this annotated frame could be different for every object (the
guideline provided in AE [75] is to annotate in the frame where it
is most clearly visible). As a result, we cannot be sure if the same
object appears in a frame where it is not annotated.

To address this, we require the model to predict exactly one
bounding box in every frame. During evaluation, we consider only
the annotated frame for a given object. If in this annotated frame,
there is a predicted bounding box with IoU ≥ 0.5, we consider
the object correctly predicted as illustrated in Figure 10. This gives
us Accuracy for SVSQ. Strict Accuracy can be easily computed by
considering all the phrases in the query i.e. the predicted boxes for

each phrase should have IoU ≥ 0.5 with the ground-truth boxes.

SEP: We have k videos and we choose one of these k videos
which gives us the Video Accuracy. If the chosen video is correct,
we then apply scoring based on SVSQ otherwise mark it incorrect.
Accuracy and Strict Accuracy computation is same as SVSQ.

TEMP: We have k videos concatenated temporally. In other
words, we have kF frames in total of which we know (k − 1)F
frames don’t contain the queried object. Thus, if among the (k −
1)F frames not containing the queried object, if a predicted box
has a score greater than a certain threshold, we mark it incorrect.
For the F frames belonging to the queried video, we use the same
method as for evaluating SVSQ. This is illustrated in Figure 11.

SPAT: In SPAT, we have k videos concatenated along the
width axis. That is, we have F frames and each of width kW ×H
(here W,H are the width and height of a single video). In each
of the F frames, there should not be a predicted box outside the
boundaries of the correct video with a score greater than some
threshold and for the annotated frame the predicted box should
have IoU ≥ 0.5. This is illustrated in Figure 12.

For TEMP and SPAT strategies, Consistency is computed by
how often the various objects are grounded in the same video.
Video Accuracy is derived from Consistency and is marked correct
only when the correct video is considered. Finally, Strict Accuracy
measures when all the phrases in the query are correctly grounded.

Selecting Threshold for Evaluation: As noted earlier, we
pose the proposal prediction as a binary classification problem,
if a proposal has a score higher than a threshold (hyper-parameter
tuned on validation set), it is considered as a predicted box. For
evaluation, we consider only the boxes which have the highest
score in each frame. But in both SVSQ and SEP cases there is
no incentive to set a threshold (>0), as the false positives cannot
be identified in the same video. On the other hand, in both TEMP
and SPAT cases, false positives can be identified since we are sure
boxes in a different video are negatives.

D. Implementation Details

ImgGrnd is an image grounding system that considers each
frame separately. It concatenates the language features to the vi-
sual features of each object which is then used to predict whether
the given object is correct. More specifically, given q̃j (Eqn 1) and
the visual features v̂i,j we concatenate them to get the multi-modal
features mIG where mIG[l, i, j] = [v̂i,j ||q̃l]. These are passed
through a two-layered MLP classifier and trained using BCE Loss.
In essence, ImgGrnd can be derived from VOGNet by removing
the object transformer and the multi-modal transformer.

VidGrnd is a video grounding system which builds upon Img-
Grnd. Specifically, it has an object transformer to encode the
language-independent relations among the objects. More formally,
given v̂i,j we apply object transformer to get v̂sai,j . The remain-
ing steps are the same as ImgGrnd. We concatenate the language
features q̃j with the self-attended object features v̂sai,j to get the
multi-modal features mV G where mV G[l, i, j] = [v̂sai,j ||q̃j ]. Af-
ter passing through a 2 layer MLP classifier, it is trained using
BCE Loss. In essence, VidGrnd can be derived from VOGNet by
removing the multi-modal transformer altogether and the relative
position encoding from object transformer.



Model Train SVSQ SEP TEMP SPAT
Acc SAcc Acc VAcc SAcc Acc VAcc Cons SAcc Acc VAcc Cons SAcc

ImgGrnd GT5 46.31 24.83 20.55 47.49 9.92 8.06 2.68 25.35 2.68 4.64 2.47 34.17 1.31
P100 55.22 32.7 26.29 46.9 15.4 9.71 3.59 22.97 3.49 7.39 4.02 37.15 2.72

VidGrnd GT5 43.37 22.64 22.67 49.6 11.67 9.35 3.37 28.47 3.29 5.1 2.66 33.6 1.74
P100 53.30 30.90 25.99 47.07 14.79 10.56 4.04 29.47 3.98 8.54 4.33 36.26 3.09

VOGNet GT5 46.25 24.61 24.05 51.07 12.51 9.72 3.41 26.34 3.35 6.21 3.40 39.81 2.18
P100 53.77 31.9 29.32 51.2 17.17 12.68 5.37 25.03 5.17 9.91 5.08 34.93 3.59

Table 4. Comparing models trained with GT5 and P100. All models are tested in P100 setting.

VOGNet: Our models are implemented in Pytorch [43].
VOGNet SPAT using GT5 takes nearly 25-30 mins per epoch
(batch size 4), compared to 3 hours per epoch for P100 (batch size
2). All models are trained for 10 epochs (usually enough for con-
vergence). All experiments can be run on a single 2080Ti GPU.

Language Feature Encoding: We use a Bi-LSTM [20, 52] (
fairseq [41] implementation). The words are embedded in R512

and the Bi-LSTM contains 2 layers with hidden size of 1024, max
sequence length of 20, andMq with input/output size of 256.

Visual Feature Encoding: The object features are obtained
from a FasterRCNN [47] with ResNext [63] pre-trained on Visual
Genome [30]. Each object feature is 2048d vector. The image
level features (2048d) and optical flow (1024d) are extracted us-
ing resnet-200 [19] and TVL1 [69] respectively and are encoded
using temporal segment networks [62]. They are concatenated to
give segment features for each frame which are 3072d vector. We
project both object and segment features into 512d vectors and
then concatenate them to get 1024d vector for each object.

Object Transformer uses 3 heads and 1 layer with each query,
key, value of 1024d (full feature dimension which is divided by
number of heads for multi-headed attention).

Multi-Modal Transformer also uses 3 heads and 1 layer but
the query, key, value are 1280d vectors (additional 256 due to con-
catenating with the language features).

E. Additional Experiments

We perform two additional experiments: (i) if the representa-
tions learned in GT5 transfer to the more general case of P100
(ii) the effect of adding more heads and layers to the object trans-
former (OTx) and multi-modal transformer (MTx).

GT5 models in P100 setting: In Table 4 we compare the mod-
els ImgGrnd, VidGrnd, and VOGNet trained in GT5 and P100
and tested in P100 setting to calculate the transfer-ability of GT5
setting. While testing in P100, for TEMP and SPAT, we set the
threshold for models trained in GT5 as 0.5 which is higher than
the threshold used when testing in GT5 (0.2). This is expected as
a lower threshold would imply a higher chance of a false positive.

In general, the drop from P100 to GT5 is significant (a
15−25% drop) for almost all models suggesting training with just
ground-truth boxes is insufficient. Nonetheless, since the relative
drops are same across models, GT5 remains a valuable proxy for
carrying out larger number of experiments.

SPAT Acc VAcc Cons SAcc

ImgGrnd 17.03 9.71 50.41 7.14
+OTx (1L, 3H) 19.8 10.91 48.34 8.45
+OTx (2L, 3H) 20.8 11.38 49.45 9.17
+OTx (2L, 6H) 21.16 12.2 48.86 9.58
+OTx (3L, 3H) 20.68 11.34 48.66 9.19
+OTx (3L, 6H) 21.14 12.1 49.66 9.52

VOGNet 23.53 14.22 56.5 11.58
+MTx (2L,3H) 23.38 14.78 55.5 11.9
+MTx (2L,6H) 23.96 14.44 55.5 11.59
+MTx (3L,3H) 24.53 14.84 56.19 12.37
+MTx (3L,6H) 24.24 15.36 57.37 12.52

+OTx(3L,6H) 24.99 17.33 66.29 14.47

Table 5. Ablative study layers and heads of Transformers.

Transformer Ablation: In Table 5 we ablate the object trans-
former and the multi-modal transformer with number of layers
and heads. It is interesting to note adding more heads better than
adding more layers for object transformer, while in the case of
multi-modal transformer both number of heads and number of lay-
ers help. Finally, we find that simply adding more layers and heads
to the object transformer is insufficient, as a multi-modal trans-
former with 1 layer and 3 heads performs significantly better than
the object transformer with 3 layers and 6 heads.

F. Visualization

In general, contrastive examples differ in exactly one part of
the phrase. However, we observed that some contrastive examples
were very difficult to distinguish. We identify two reasons: (i)
Considering only one verb in the query becomes restrictive. For
instance, in Figure 13-(b) video (3), the complete description has
“the bowling ball that goes around the ring and then hits the pins”
and the initial part of it going around the ring is lost. (ii) Lan-
guage ambiguity of the form “person playing guitar” vs “person
practicing guitar”, while “playing” and “practicing” have distinct
meanings, in some situations they can be used interchangeably.

We now visualize a few examples for TEMP and SPAT in Fig-
ure 13, 14, 15. All visualizations are obtained using VOGNet
trained in GT5 setting. For each case, we show 2 frames from
each video and color-code the arguments in the given query (Arg0



(a) Query: A woman standing on a sidewalk. From left to right, other videos are: (1): A woman standing in kitchen (2): A man solving a puzzle (3): Men
standing on sidewalk. Our model disambiguates the two “sidewalks”, as well as the “woman” and localizes them in the same video. Here (2) is a randomly
sampled (“woman”, “sidewalk” only have “stand” relation).

(b) Query: The ball hits the pins creating a strike. From left to right, other videos are: (2): The girl with the ball hits it (3): A bowling ball hits the pins. (4):
He uses razor to trim. While our model correctly chooses the correct frame, we note (3) is very close to (1) in terms of description. Here, our sampling
method fails by providing “too” similar videos.

Figure 13. VOGNet predictions TEMP strategy in GT5 setting. We show two frames from each video, but the model looks at F=40 frames.
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(a) Query: He pours the mixed drink [Arg3: to the cup]. Left-to-right
other videos are: (2): Two men drinking an energy drink. (3): A drink
poured into martini glass. (4): A young man pours oil into the pan. Our
model finds the “man” and the “mixed drink” correctly but fails to
localize the “cup” due to small number of queries containing Arg3.
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(b) Query: The man riding the bike. Left-to-right other videos are: (2):
Men put the other bike down. (3): A boy rides his skateboard. (4): We see
the boy riding his dirtbike. Here, our model correctly distinguishes among
the bikes, and who is riding what.

Figure 14. VOGNet predictions SPAT strategy in GT5 setting.
We show two frames from each video, and each frame contains
4 videos concatenated together.

is Green, Verb is Red, Arg1 is Blue, Arg2 is Magenta) Remaining
arguments are mentioned in the query (like in Figure 14 (a)).

For TEMP, since objects are not being considered independent
of each other, the model doesn’t ground objects which are present
in the query but not related. For instance in Figure 13-(a), even
though “woman” and “sidewalk” are separately present in two
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Query: A man and two kids building a sand castle. Left-to-right other
videos: (1): A group of kids trying to build a sand castle. (3): They are
driving through the sand. (4): She is building a castle. In the first frame,
the ground-truths are marked in light-green and orange and in the second
frame is our model’s incorrect prediction. It is unable to distinguish based
on “man” due to influence of “kids” in the agent.

Figure 15. Incorrect prediction of VOGNet for SPAT strategy

other videos, these are given very low score. Similarly, in Fig-
ure 13-(b), “ball” in (2) is not grounded which is not related to
the query. These suggest VOGNet is able to exploit the cues in
the language query to ground the objects and their relations in the
visual domain.

For SPAT, in Figure 14-(a) our model finds the correct video.
It is able to differentiate among someone pouring drink into a glass
(2), someone pouring oil (3), or someone drinking the drink (1).
However, it is unable to find the “cup” which we attribute to the
smaller number of examples containing Arg3 which is limited to
verbs like “pour”. In Figure 14-(b) our model correctly finds both
“man” and the “bike” that he is riding and distinguishes between
“ride” and “put”, “bike” and “skateboard” (3).

Finally, in Figure 15, we find the language ambiguity of “trying
to build” and “building” which are synonymously used. While our
model is able to distinguish (4) by its agent “she” compared to
“man and two kids”, it is unable to make the distinction between
“a man and two kids” and “a group of kids” (1). We attribute this
to the use of a single embedding for each role (here Arg0) and not
differentiating among the various objects in that role.


