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In Section 1 we provide more details on our implementa-
tion of the Multi-head R-CNN network. Then, in Section 3
we describe additional ablation studies on the advantages
of the auto-calibrated training, as well as other architectural
choices. Finally, Section 4 refers the reader to the qualitative
results obtained on videos from the Chimp&See dataset.

1. Architecture
We introduced a number of changes and improvements

in the DensePose head of the standard DensePose R-CNN
architecture of [2] with ResNet-50 [4] backbone. These
changes are listed below for the affected branches; other
branches remained unchanged and correspond exactly to the
Mask R-CNN architecture of [3].

• We have increased the RoI resolution from 14 × 14 to
28× 28 in the DensePose head, as proposed in [7].

• We have replaced the 8-layer DensePose head with the
geometric and context encoding (GCE) module [7], com-
bining a non-local convolutional layer [6] with the atrous
spatial pyramid pooling (ASPP) [1].

• We have replaced the original FPN of DensePose R-CNN
with a Panoptic FPN [5].

Each of these modifications led to increase in network per-
formance due to improved multi-scale context aggregation.
We refer the reader to the work of [7] for ablation studies
whose results are aligned well with our own observations.

To predict or we simply extend the output layer of the
corresponding head by doubling the number of its neurons.

Our codebase, network configuration files for each exper-
iment and pretrained models will be publicly released.

2. Computational cost
Our auto-calibrated model has a negligible computational

overhead (< 1%) compared to the baseline model. Before
training the student, sampling of the pseudo-labels requires
one forward pass of the teacher network over the unlabeled
dataset. The teacher and the student networks share the same
architecture.

3. Ablation studies
First, we report performance of the original Mask R-

CNN [3] framework, as well as our auto-calibrated version
of the same architecture, on detection and segmentation tasks
(see Tab. 1). Training in the auto-calibration setting resulted
in minor gains on the COCO dataset that the model was
trained on, but, as expected, led to major improvements
in performance on the out-of-distribution data (DensePose-
Chimps and Chimp&See).

Second, Tab. 2 shows results of replacing the proposed
binary foreground-background segmentation in the Dense-
Pose head (a) with 15-way coarse body part segmentation
as in the original DensePose-RCNN framework [2] (b). We
can see that binary segmentation generalizes better than the
15-way. We have also experimented with using the binary
mask from the Mask R-CNN head instead of mask produced
by the DensePose head (Tab. 2 (c)) during inference step.
Moreover, even though exploiting the mask from the sep-
arate mask head at test time results in better performance,
complete removal of the mask from the DensePose head
leads to under-training and decreased accuracy of estimation
of uv-coordinates (since in this case the DensePose head
receives only sparse supervisory signals at the annotated
locations).

4. Qualitative results
In addition, we also point the readers to the video sam-

ples∗ from the Chimp&See dataset showing frame-by-frame
predictions produced by our model before (teacher) and after
self-training (student). The results produced by the student
network are generally significantly more stable.

∗ https://asanakoy.github.io/densepose-evolution
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COCO minival DensePose-Chimps Chimp&See

model APD APS APD APS APD APS

Mask RCNN 40.98 37.17 48.3 44.92 40.56 33.91
σ-Mask RCNN 41.12 ( +0.14 ) 37.09 ( -0.08 ) 52.05 ( +3.75 ) 47.94 ( +3.02 ) 42.9 ( +2.34 ) 34.74 ( +0.82 )

Table 1: Auto-calibrated Mask R-CNN [3]: detection, instance segmentation on COCO minival (all classes).

model Mask in DensePose head AP AP50 AP75

a) DensePose-RCNN* (σ) binary 53.20 88.27 56.98
b) DensePose-RCNN* (σ) 15-way 50.87 86.91 54.49

c) DensePose-RCNN* (σ) + mask from the mask head binary 54.35 88.58 60.28

Table 2: Ablation study of the mask in the DensePose head. Reports the DensePose performance on DensePose-COCO
minival. a) our proposed architecture; b) replace the binary segmentation of the DensePose head with 15-way coarse body
part segmentation as in the original DensePose-RCNN framework [2]; c) use the binary mask from the DensePose head during
training, but substitute it with the mask from the separate mask head during inference.
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