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1. Results on Cityscapes test
We submit our best model trained on Cityscapes train-

val for online evaluation on the Cityscapes benchmark [2].
Table 1 shows the results. We achieve considerably better
test results (1.7 pp mIoU MO at mid-term) which indicates
absence of bias towards the validation set.

Short-term Mid-term
model train eval All MO All MO

F2MF-DN121 train val 69.6 67.7 57.9 54.6
F2MF-DN121 train+val test 70.2 68.7 59.1 56.3

Table 1. Forecasting on Cityscapes test outperforms the validation
mIoU accuracy presented in the main paper.

2. Per-class results
Table 2 shows per-class accuracies (IoU) of four F2MF

models and two oracles. The two sections are dedicated to
models based on ResNet-18 and DenseNet-121. Each sec-
tion first presents the oracle and then compares it to short-
term and mid-term forecasts. The last eight classes in the ta-
ble represent moving objects. We do not show F2M and F2F
forecasts since they are almost always worse than F2MF.

We observe that all forecasting models achieve the low-
est accuracy on the class pole. Forecasting poles is hard
since their elongation is perpendicular to the motion: even
a small displacement can miss an entire object. Thus, our
F2MF models often opt to entirely omit some poles in order
to avoid double punishment (mIoU counts both false posi-
tives and false negatives). This can be confirmed by com-
paring incidence of pole pixels in oracle prediction (1.14%),
with the corresponding statistics in short-term (1.00%) and
mid-term (0.69%) forecasts. Among the moving object
classes, persons cause the largest performance deteriora-
tion: 14.7 mIoU pp for short-term and 31.8 mIoU pp for
mid-term period. This indicates that our F2MF models
find person motion much less predictable than the motion
of vehicles. People assume different motion styles and
cause considerable (dis-)occlusion especially since they of-
ten move in groups. Their vertical elongation leads to simi-
lar problems as in the case of poles. These facts make fore-
casting of future person locations and poses quite challeng-
ing.

We also observe a somewhat unexpected finding. A
short-term forecast of the ResNet-based model for the class
truck outperforms the oracle for 5pp mIoU (cf. Table 2,
section RN-18). This result should be taken with a grain of
salt, since there are only 120 truck instances in Cityscapes
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Oracle RN-18 97.5 81.6 90.7 50.1 53.4 56.1 60.3 70.8 90.9 60.9 92.9 75.9 53.0 93.2 67.4 84.4 72.0 54.5 71.7 72.5
F2MF w/o d.a. short-term 96.3 74.9 87.8 50.4 50.6 40.0 53.0 59.9 87.7 56.6 89.3 61.2 45.5 87.6 72.1 78.1 65.8 52.3 62.1 66.9

F2MF w/o d.a. mid-term 94.1 64.5 81.8 46.8 45.2 19.1 35.5 40.9 80.9 50.6 82.8 44.1 27.9 76.6 67.3 68.5 49.0 38.7 46.6 55.9

Oracle DN-121 97.8 82.9 91.8 60.1 59.4 59.8 65.0 74.2 91.4 62.0 93.5 78.2 58.4 94.2 80.8 85.0 68.9 61.6 73.8 75.8
F2MF w/ d.a. short-term 96.7 76.5 89.0 57.8 56.5 44.2 57.5 63.9 88.5 59.0 90.4 64.7 49.8 88.8 77.5 81.3 63.2 50.5 65.2 69.6

F2MF w/ d.a. mid-term 94.6 66.4 83.0 50.6 49.9 19.2 38.4 42.9 81.9 51.5 83.6 45.9 30.5 78.4 71.1 73.1 47.6 41.0 48.8 57.9

Table 2. Per-class results (IoU) on Cityscapes val for models based on ResNet-18 and DenseNet-121. Only DenseNet-based F2MF models
are trained with data augmentation in order to show the full spectrum of achievable performance.
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Figure 1. A clip in which F2MF-RN18 short-term forecast beats the oracle. Top row shows the four observed frames. Bottom row shows
ground truth, oracle, our forecast and dense wF2M weights. The forecast has an opportunity to observe the entire truck at a reasonable scale.

val. Nevertheless, a closer look reveals that forecasting
presents real advantages in particular clips, as illustrated in
Figure 1. There are two ways how forecast may beat the
oracle. First, if a very large vehicle moves towards the cam-
era (which is the usual case in road-driving), then the ve-
hicle is often more recognizable at middle distance than in
the close-up case. A forecasting model has a chance to rec-
ognize the object when it is far from the camera, and then
to simply propagate that information to the forecast. The
oracle does not have that luxury and has to deal only with
the single image where the object may be larger than the
receptive field. Second, F2M forecasting has an opportu-
nity to convert a near miss to a hit by ensembling warped
representations from different frames.

Note that the oracle beats our forecasts at all classes in
the case of the more powerful single-frame model (cf. Table
2, section DN-121). However, previously described effects
seem still to be present, since forecasted trucks and buses
lose less IoU performance with respect to the oracle than all
classes with moving objects.

3. Failure cases
Figure 2 shows some failure cases of our best model.

The first row shows the last observed image while the sub-
sequent three rows show the future image overlayed with
ground truth, oracle prediction, and F2MF-DN121 fore-
cast. The last row visualizes the F2M weighting factor wF2M

which reveals whether the particular pixel has been princi-

pally forecasted by F2M (red) or F2F (blue). The columns
correspond to three short-term (columns 1-3) and three mid-
term (columns 4-6) forecasts which we pick among the clips
with the largest cross-entropy loss on Cityscapes val.

The first clip shows a previously unobserved cyclist en-
tering the future frame from the left. Our forecasting model
is unable to reason correctly here, since no visual evidence
about the cyclist was present in the observed frames. In the
next two clips, forecasting errors are caused by poor single-
frame performance. A significant part of the road is mis-
interpreted for sidewalk (column 2), while some terrain is
classified as vegetation (column 3) both in the oracle predic-
tion and the forecast. We see that F2MF model is unable to
recover from consistent mis-prediction by the single-frame
model.

The first two mid-term examples (columns 4 and 5) show
poor forecast of thin traffic signs, which is likely due to
coarse resolution of our F2MF setup. We note a correct F2F
preference at novel scenery in the top-left corner of the fu-
ture image in column 4 (please note that the ego-car is turn-
ing left). We also note the incorrect forecast of the tram mo-
tion in column 5, where the tram does not re-appear at the
other side of the minivan. The last clip features prominent,
independent and articulated motion due to nearby pedestri-
ans crossing the street. The forecasting model disregards
the F2M branch (blue color in row 5) while the F2F branch
seems overwhelmed by the sheer complexity of the scene
dynamics and consequently produces blobby predictions.



Figure 2. Six failure cases of our best performing model. The rows contain i) the last observed image, ii) semantic segmentation ground-
truth, iii) prediction by our oracle, iv) F2MF-DN121 forecast, and v) the heat map of wF2M where red denotes F2M preference. Rows ii),
iii) and iv) are overlaid with the unobserved future image. Each column corresponds to a different clip from Cityscapes val. We show three
examples of short-term forecast (columns 1-3) and three examples of mid-term forecast (columns 4-6).

4. Visualization of the feature flow
Figure 3 shows feature flows predicted by F2M models

with forward and backward warping. The columns corre-
spond to two Cityscapes val clips. Rows 1 and 4 show the
last observed image (It) and the unobserved future image
(It+3). Row 2 shows the forward feature flow f̂ t+3

t pre-
dicted by our F2M-RN18-FW model which achieves 64.6
mIoU. Row 3 shows the backward feature flow f̂ tt+3 pre-
dicted by our F2M-RN18-BW model which achieves 64.8
mIoU (cf. Table 4 in the article).

We encode flow with the standard color-code [1] where
cyan means left, yellow — down, red — right, and blue —
up, while the saturation is proportional to the magnitude.
We observe i) that forward flow aligns with object locations
in the observed image, ii) that backward flow aligns with
the future object locations, and iii) that corresponding mo-
tion vectors are opposite for the two F2M variants. This is
in concordance with equation (1) and the discussion from
section 3.4 in the paper.

In the first column, we can see that the backward flow
aligns with the future cyclist location. On the other hand,
the forward flow is better aligned with the cyclist in the ob-
served image. The same pattern occurs at the distant mov-
ing pedestrian in the left part of the image. Motion of the
distant car in the image center has been detected only by
the backward F2M model. The complementary nature of
the two feature flows is clearly visible in the second column
as well. Additionally, there we note qualitatively correct
flow on stationary parts of the scene, which occurs due to
ego-motion of the camera.

Figure 3. Visualization of the feature flows forecasted by two F2M
models on Cityscapes val. Row 1 shows the last observed image.
Rows 2-3 show forward and backward feature flows as forecasted
by corresponding independent F2M-RN18 models. Row 4 shows
the unobserved future image. Outlines of the moving objects indi-
cate that the feature flows are qualitatively correct.
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F2M-RN18 short-term 98.6 79.1 95.6 61.0 54.3 52.1 61.1 73.1 94.8 66.7 96.8 62.9 50.9 95.5 83.4 85.8 78.9 66.0 78.4 75.5

F2F-RN18 short-term 98.5 78.7 95.6 62.0 56.1 51.6 60.4 71.9 94.5 66.7 96.8 61.0 49.1 95.5 85.0 86.9 81.4 64.1 76.7 75.2

F2M-RN18 mid-term 96.8 69.9 89.2 50.5 48.0 31.8 45.4 48.8 86.6 54.7 88.6 37.4 32.8 76.7 64.7 74.5 52.4 46.3 56.4 60.7

F2F-RN18 mid-term 96.6 67.9 88.6 51.8 47.7 29.9 43.5 47.2 86.0 53.1 88.1 35.8 32.1 75.5 64.7 74.1 43.3 45.9 54.2 59.3

Table 4. Independent F2M model outperforms independent F2F model at pixels which are assigned to the F2M head (wF2M > .7) by the
F2MF model. We show per-class IoU accuracy on Cityscapes val of our short-term (top) and mid-term (bottom) forecasts.

Forecasted flows from Figure 3 should not be com-
pared to predictions made by dedicated optical flow mod-
els. First, our feature flows are predicted by recognizing
and extrapolating past events, without observing the future
image. Second, our models are not trained with optical flow
groundtruth. Our forecasts are trained to reconstruct inter-
mediate feature representations at 32× subsampled resolu-
tion. This goal is loose and does not require as accurate flow
prediction as in the reconstruction of the RGB frames. Still,
the recovered motion is quite good and allows independent
F2M models to outperform F2F in many image pixels as
will be shown next.

5. Validation of the correlation embedding
Table 3 validates the choice of feature embedding which

we apply prior to the spatio-temporal correlation inference.
Row 1 shows the baseline mIoU accuracy (no embedding).
In this case, the correlation is established across unit feature
vectors from the pyramid pooling module. Rows 2-4 corre-
spond to embeddings with one 1 × 1, one 3 × 3 and two
3×3 convolutional layers. Single 3×3 convolution outper-
forms the baseline for 0.5 (short-term) and 1.1 (mid-term)
pp mIoU. Single 1 × 1 convolution is only slightly better
than the baseline. This suggests that the success of single-
layer 3×3 embedding is due to relative spatial information.
The two-layer 3×3 is better than no embedding and single-
layer 1×1, but overall worse than single-layer 3×3, which
indicates overfitting.

Short-term Mid-term
Embedding All MO All MO

None 66.5 65.0 54.8 50.9
Conv 1× 1 66.6 65.4 54.9 51.2
Conv 3× 3 66.9 65.6 55.9 52.4
2× Conv 3× 3 66.9 65.2 55.3 51.4

Table 3. Validation of different metric embeddings for the correla-
tion module presented in the main paper. We show F2MF-RN18
forecasting performance (mIoU accuracy) on Cityscapes val.

6. Per-class accuracy in F2M pixels
Table 4 shows per class results in Cityscapes val pix-

els which are assigned to the F2M head with probability
wF2M > .7. These pixels account for 49.9% image con-
tent in short-term forecast and 39.8% at mid-term. We ob-
serve that F2M outperforms F2F for 0.3pp (short-term) and
1.4pp (mid-term). Note that these metrics can not be ob-
tained from the content of Fig. 6 in the main paper although
the two experiments are related. Note that the compound
F2MF model would still come out as the winner even under
these terms, despite having neglectably larger capacity than
independent models.
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