
Supplementary Material:
Can facial pose and expression be separated with weak perspective camera?

Appendix A
Here we prove Theorem 3.1 of the main paper, which for

convenience we copy below.

Theorem 3.1. Suppose we have 3D facial points with a
neutral expression, {X̄i}Ni=1, and 2D image points {xi}Ni=1
corresponding to those 3D points but with a rotation. Let
R
∗ and σ

∗ minimize J0(R,σ), r be defined as in (9), and
B∈R3N×M be a matrix such that rank (Ẇ(σ∗)Ṙ∗

B) =
M < 2N . Then,

min
R,e,σ

JB(R, e,σ) ≤ min
R,σ

J0(R,σ). (S.1)

Moreover, this inequality holds strictly (i.e., without equal-

ity) if r ∉ Null [(Ẇ(σ∗)Ṙ∗
B)T ], in which case ∣∣e∗∣∣>0

where e
∗ is the minimizer of JB(R, e,σ) w.r.t. variable e.

Proof. Consider the function JB(R∗
, e,σ

∗), which can be
treated as a single-variable function (of e) as R

∗ and σ
∗ are

fixed values. It is trivial to show that JB(R∗
, e,σ

∗) can be
written as:

JB(R∗
, e,σ

∗) = ∣∣x − Ẇ(σ∗)Ṙ∗(X̄ +Be)∣∣ (S.2)

= ∣∣r − Ẇ(σ∗)Ṙ∗
Be∣∣, (S.3)

where r, x̃, X̄, Ṙ
∗ and Ẇ(σ∗) are defined in Eq. (9) of the

main paper and the text that follows it. Let us define the
matrix C as the 2N ×M matrix

C ∶= Ẇ(σ∗)Ṙ∗
B. (S.4)

Then, (S.3) can be more compactly rewritten as

JB(R∗
, e,σ

∗) = ∣∣r −Ce∣∣ . (S.5)

Since (S.5) involves the `2 norm and according to the as-
sumption of Theorem 3.1 C is a skinny matrix with full
column rank, the minimizer of (S.5) is [1]

e
∗
∶= arge min ∣∣r −Ce∣∣ = C

†
r (S.6)

where C
† is the Moore-Penrose inverse of C. Thus,

the minimal value that (S.5) can take is »»»»»
»»»»»r −CC

†
r
»»»»»
»»»»»,

which can be written as »»»»»
»»»»»(I −CC

†)r»»»»»
»»»»». Since CC

†

is an orthogonal projection matrix, the matrix norm»»»»»
»»»»»I −CC

†»»»»»
»»»»» is 1 [3]. Therefore, by definition of matrix

norm [1], it holds that

»»»»»
»»»»»r −CC

†
r
»»»»»
»»»»» =

»»»»»
»»»»»(I −CC

†) r
»»»»»
»»»»»

≤
»»»»»
»»»»»I −CC

†»»»»»
»»»»» ∣∣r∣∣ = ∣∣r∣∣ . (S.7)

Therefore, the following clearly holds

min
R,e,σ

JB(R, e,σ) ≤ min
e

JB(R∗
, e,σ

∗)

= min
e

∣∣r −Ce∣∣

=
»»»»»
»»»»»r −CC

†
r
»»»»»
»»»»»

≤ ∣∣r∣∣
= J0(R∗

,σ
∗)

= min
R,σ

J0(R,σ). (S.8)

Thus, we proved the main statement (S.1) in Theorem 3.1.
To prove the rest of the theorem, let us suppose, as specified
in the theorem, that rank(C) = rank(Ẇ(σ∗)Ṙ∗

B) = M

and that r ∉ Null(CT ). Note that CC
† is an orthogonal

matrix that projects a vector on the column space of C;
therefore »»»»»

»»»»»r −CC
†
r
»»»»»
»»»»», which is the projection error, is al-

ways smaller than the norm of the projected vector ∣∣r∣∣,
unless r is orthogonal to the column space of C. The latter
condition holds if and only if r is orthogonal to every col-
umn of C, i.e. if r

T
C = 0, or, equivalently, if C

T
r = 0

(i.e., if r ∈ Null(CT )). Thus, if r ∉ Null(CT ), (S.7) holds
strictly, and, as a result, inequality (S.8) also holds strictly:

min
R,e,σ

JB(R, e,σ) < min
R,σ

J0(R,σ).

We will now use proof by contradiction to prove that the
minimizer of JB(R, e,σ) w.r.t. e, namely e

∗, satisfies
the inequality ∣∣e∗∣∣ > 0 (or equivalently e

∗
≠ 0) when

rank(C) = M and r ∉ Null(CT ). To establish a contra-
diction, let us suppose that

min
R,σ

JB(R,0,σ) ≤ min
e

JB(R∗
, e,σ

∗) (S.9)
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Figure S.1. The AU false positive rates (FPRs) against the rotation amount, shown separately for lower- and upper-face AUs (see Section ??
for various FOV and subject-to-camera distances. (a) Yaw rotation; (b) pitch rotation.

for r ∉ Null(CT ). But JB(R,0,σ) = J0(R,σ), there-
fore (S.9) can be rewritten as

min
R,σ

J0(R,σ) ≤ min
e

JB(R∗
, e,σ

∗). (S.10)

Also according to (S.8) and the argument that follows it,
when r ∉ Null(CT ), we have that

min
e

JB(R∗
, e,σ

∗) < min
R,σ

J0(R,σ). (S.11)

But (S.10) contradicts (S.11), therefore our original suppo-
sition (S.9) cannot hold. In other words, the e that min-
imizes JB(R, e,σ) cannot be zero when r ∉ Null(CT ),
therefore ∣∣e∗∣∣ > 0.

Appendix B

We now discuss why the vector r defined in Eq. (9) is not
likely to be in the nullspace of the transpose of the 2N ×M
matrix C ∶= Ẇ(σ∗)Ṙ∗

B with rank M (see Appendix A).
Recall that r can be interpreted as the minimal 3D-to-2D
mapping error for the WP camera (Section 3); that is, the
difference between the true 2D projection of a set of 3D
points and their 2D projection according to the WP camera.
First of all, note that r cannot be exactly 0 unless the object
that is being projected into 2D is planar because the WP
camera does not have the perspective effect [2]. Since faces
are not planar objects, we can ignore the possibility of r
being 0 and since rank(C) = M > 0 (see Theorem 3.1),
C ≠ 0, therefore we can ignore the possibility that r ∈

Null(CT ) is satisfied trivially.
Moreover, if we are allowed to treat r as a random vector,

we can show that the probability that it lies in Null(CT ) is
0. To this end, let r be a continuous random vector and de-
fine y = (y1, . . . , yM) as the M -dimensional random vec-
tor y ∶= C

T
r. Clearly, y = 0 if and only ∣∣y∣∣ is 0. The

probability of event r ∈ Null(CT ) can be written as:

P (r ∈Null(CT ))
= P (CT

r=0) = P (y=0) = P (z=0), (S.12)

where z is a (one-dimensional) random variable defined
through the transformation of the random vector r as z ∶=
∑M

i=1 y
2
i = ∑M

i=1(c
T
i r)2 = 0, where ci is the ith column

of C. Thus, we have reduced the probability of the event
r ∈ Null(CT ) to the probability of a random variable,
namely z, taking the value 01. This probability is 0 since
the probability of a continuous random variable taking any
given value is 0 [4].

Appendix C
In this section we report, similarly to Section 4.5 of the

main text, the false positives of Action Units (AUs) in the
presence of pure head movements, but using the original
source code of the ITWMM method2. Fig. S.1 reports the
false positive rate (FPR) in AU detection w.r.t. amount of
rotation for yaw and pitch rotation. Results are reported for
two settings: (i) using the default parameters of the code
and (ii) using only landmarks by setting the weight of the
texture component to zero. In both cases, the weight of the
smoothing component in the code has been set to 0. Results
suggest that, similarly to results with our own implemen-
tation (Fig. 8 of the main text), spurious expressions (i.e.,
false positives) are generated in the presence of pure rota-
tions.
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