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Appendix

A. Detailed results
A.1. Homography estimation

Qualitative results: A full page of qualitative results of
SuperGlue matching on synthetic and real homographies
can be seen in Figure 6.

Synthetic dataset: We take a more detailed look at the ho-
mography evaluation from Section 5.1. Figure 1 shows the
match precision at several correctness pixel thresholds and
the cumulative error curve of homography estimation. Su-
perGlue dominates across all pixel correctness thresholds.
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Figure 1: Details of the homography evaluation. Super-
Glue exhibits higher precision and homography accuracy at
all thresholds. High precision results in more accurate esti-
mation with DLT than with RANSAC.

Local
features Matcher

Viewpoint Illumination

P R P R

SuperPoint

NN 39.7 81.7 51.1 84.9
NN + mutual 65.6 77.1 74.2 80.7
NN + PointCN 87.6 80.7 94.5 82.6
NN + OANet 90.4 81.2 96.3 83.5
SuperGlue 91.4 95.7 89.1 91.7

Table 1: Generalization to real data. We show the preci-
sion (P) and recall (R) of the methods trained on our syn-
thetic homography dataset (see Section 5.1) on the view-
point and illumination subsets of the HPatches dataset.
While trained on synthetic homographies, SuperGlue gen-
eralizes well to real data.

1 ETH Zurich
2 Magic Leap, Inc.

HPatches: We assess the generalization ability of Super-
Glue on real data with the HPatches [2] dataset, as done in
previous works [5, 11]. This dataset depicts planar scenes
with ground truth homographies and contains 295 image
pairs with viewpoint changes and 285 pairs with illumina-
tion changes. We evaluate the models trained on the syn-
thetic dataset (see Section 5.1). The HPatches experiment
is summarized in Table 1. As previously observed in the
synthetic homography experiments, SuperGlue has signif-
icantly higher recall than all matchers relying on the NN
search. We attribute the remaining gap in recall to sev-
eral challenging pairs for which SuperPoint does not de-
tect enough repeatable keypoints. Nevertheless, synthetic-
dataset trained SuperGlue generalizes well to real data.

A.2. Indoor pose estimation

Qualitative results: More visualizations of matches com-
puted by SuperGlue on indoor images are shown in Fig-
ure 7, and highlight the extreme difficulty of the wide-
baseline image pairs that constitute our evaluation dataset.

ScanNet: We present more details regarding the results on
ScanNet (Section 5.2), only analyzing the methods which
use SuperPoint local features. Figure 2 plots the cumulative
pose estimation error curve and the trade-off between pre-
cision and number of correct matches. We compute the cor-
rectness from the reprojection error (using the ground truth
depth and a threshold of 10 pixels), and, for keypoints with
invalid depth, from the symmetric epipolar error. We obtain
curves by varying the confidence thresholds of PointCN,
OANet, and SuperGlue. At evaluation, we use the original
value 0.5 for the former two, and 0.2 for SuperGlue.
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Figure 2: Details of the ScanNet evaluation. Poses esti-
mated with SuperGlue are more accurate at all error thresh-
olds. SuperGlue offers the best trade-off between precision
and number of correct matches, which are both critical for
accurate and robust pose estimation.
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Local
features Matcher

Exact AUC Approx. AUC [19]

5◦ 10◦ 20◦ 5◦ 10◦ 20◦

ContextDesc NN + ratio test 26.09 45.52 63.07 53.00 63.13 73.00

SIFT

NN + ratio test 24.09 40.71 58.14 45.12 55.81 67.20
NN + OANet* 28.76 48.42 66.18 55.50 65.94 76.17
NN + OANet 29.15 48.12 65.08 55.06 64.97 74.83
SuperGlue 30.49 51.29 69.72 59.25 70.38 80.44

SuperPoint
NN + mutual 16.94 30.39 45.72 35.00 43.12 54.05
NN + OANet 26.82 45.04 62.17 50.94 61.41 71.77
SuperGlue 38.72 59.13 75.81 67.75 77.41 85.70

Table 2: Outdoor pose estimation on YFCC100M pairs.
The evaluation is performed on the same image pairs as
in OANet [19] using both their approximate and our exact
AUC. SuperGlue consistently improves over the baselines
when using either SIFT and SuperPoint.

A.3. Outdoor pose estimation

Qualitative results: Figure 8 shows additional results on
the Phototourism test set and the MegaDepth validation set.

YFCC100M: While the PhotoTourism [1] and Zhang et
al.’s [19] test sets are both based on YFCC100M [16], they
use different scenes and pairs. For the sake of compara-
bility, we also evaluate SuperGlue on the same evaluation
pairs as in OANet [19], using their evaluation metrics. We
include an OANet model (*) retrained on their training set
(instead of MegaDepth) using root-normalized SIFT. The
results are shown in Table 2.

As observed in Section 5.3 when evaluating on the Pho-
toTourism dataset, SuperGlue consistently improves over
all baselines for both SIFT and SuperPoint. For SIFT, the
improvement over OANet is decreased, which we attribute
to the significantly higher overlap and lower difficulty of the
pairs used by [19]. While the approximate AUC tends to
overestimate the accuracy, it results in an identical ranking
of the methods. The numbers for OANet with SIFT and Su-
perPoint are consistent with the ones reported in their paper.

Method
Correctly localized queries (%)

# features
.5m/2◦ 1m/5◦ 5m/10◦

R2D2 [11] 46.9 66.3 88.8 20k
D2-Net [6] 45.9 68.4 88.8 15k

UR2KID [18] 46.9 67.3 88.8 15k
SuperPoint+NN+mutual 43.9 59.2 76.5 4k
SuperPoint+SuperGlue 45.9 70.4 88.8 4k

Table 3: Visual localization on Aachen Day-Night. Super-
Glue significantly improves the performance of SuperPoint
for localization, reaching new state-of-the-art results with
comparably fewer keypoints.

B. SuperGlue for visual localization

Visual localization: While two-view relative pose esti-
mation is an important fundamental problem, advances in
image matching can directly benefit practical tasks like vi-
sual localization [13, 12], which aims at estimating the ab-
solute pose of a query image with respect to a 3D model.
Moreover, real-world localization scenarios exhibit signifi-
cantly higher scene diversity and more challenging condi-
tions, such as larger viewpoint and illumination changes,
than phototourism datasets of popular landmarks.

Evaluation: The Aachen Day-Night benchmark [14, 13]
evaluates local feature matching for day-night localization.
We extract up to 4096 keypoints per images with Super-
Point, match them with SuperGlue, triangulate an SfM
model from posed day-time database images, and regis-
ter night-time query images with the 2D-2D matches and
COLMAP [15]. The evaluation server1 computes the per-
centage of queries localized within several distance and
orientation thresholds. As reported in Table 3, Super-
Point+SuperGlue performs similarly or better than all exist-
ing approaches despite using significantly fewer keypoints.
Figure 3 shows challenging day-night image pairs.
1https://www.visuallocalization.net/

SuperGlue
keypoints: 3713:4096
inliers: 446/502

query/night/nexus5x/IMG_20161227_191152.jpg db/1736.jpg
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query/night/nexus5x/IMG_20161227_191819.jpg db/2178.jpg
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inliers: 596/648

query/night/nexus5x/IMG_20161227_173326.jpg db/2307.jpg
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Figure 3: Matching challenging day-night pairs with SuperGlue. We show predicted correspondences between night-
time queries and day-time databases images of the Aachen Day-Night dataset. The correspondences are colored as RANSAC
inliers in green or outliers in red. Although the outdoor training set has few night images, SuperGlue generalizes well to such
extreme illumination changes. Moreover, it can accurately match building facades with repeated patterns like windows.
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SuperGlue inference time
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Figure 4: SuperGlue detailed inference time. Super-
Glue’s two main blocks, the Graph Neural Network and the
Optimal Matching Layer, have similar computational costs.
For 512 and 1024 keypoints per image, SuperGlue runs at
14.5 and 11.5 FPS, respectively.

C. Timing and model parameters

Timing: We measure the run-time of SuperGlue and its
two major blocks, the Graph Neural Network and the Opti-
mal Matching Layer, for different numbers of keypoints per
image. The measurements are performed on an NVIDIA
GeForce GTX 1080 GPU across 500 runs. See Figure 4.

Model Parameters: The Keypoint Encoder MLP
has 5 layers, mapping positions to dimensions of size
(32, 64, 128, 256, D), yielding 100k parameters. Each layer
has the three projection matrices, and an extra WO to deal
with the multi-head output. The message update MLP has
2 layers and maps to dimensions (2D,D). Both MLPs use
BatchNorm and ReLUs. Each layer has 0.66M parameters.
SuperGlue has 18 layers, with a total of 12M parameters.

D. Analyzing attention

Quantitative analysis: We compute the spatial extent of
the attention weights – the attention span – for all layers
and all keypoints. The self-attention span corresponds to the
distance in pixel space between one keypoint i and all the
others j, weighted by the attention weight αij , and averaged
for all queries. The cross-attention span corresponds to the
average distance between the final predicted match and all
the attended keypoints j. We average the spans over 100
ScanNet pairs and plot in Figure 5 the minimum across all
heads for each layer, with 95% confidence intervals.

The spans of both self- and cross-attention tend to de-
crease throughout the layers, by more than a factor of 10 be-
tween the first and the last layer. SuperGlue initially attends
to keypoints covering a large area of the image, and later
focuses on specific locations – the self-attention attends to
a small neighborhood around the keypoint, while the cross-
attention narrows its search to the vicinity of the true match.
Intermediate layers have oscillating spans, hinting at a more
complex process.
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Figure 5: Attention spans throughout SuperGlue. We
plot the attention span, a measure of the attention’s spatial
dispersion, vs. layer index. For both types of attention, the
span tends to decrease deeper in the network as SuperGlue
focuses on specific locations. See an example in Figure 9.

Qualitative example: We analyze the attention patterns of
a specific example in Figure 9. Our observations are consis-
tent with the attention span trends reported in Figure 5.

E. Experimental details

In this section, we provide details on the training and
evaluation of SuperGlue. The trained models and the
evaluation code and image pairs are publicly available at
github.com/magicleap/SuperGluePretrainedNetwork.

Choice of indoor dataset: Previous works on inlier
classification [9, 19, 3] evaluate indoor pose estimation
on the SUN3D dataset [17]. Camera poses in SUN3D are
estimated from SIFT-based sparse SfM, while ScanNet
leverages RGB-D fusion and optimization [4], resulting
in significantly more accurate poses. This makes ScanNet
more suitable for generating accurate correspondence
labels and evaluating pose estimation. We additionally
noticed that the SUN3D image pairs used by Zhang et
al. [19] have generally small baseline and rotation angle.
This makes the essential matrix estimation degenerate [7]
and the angular translation error ill-defined. In contrast,
our ScanNet wide-baseline pairs have significantly more
diversity in baselines and rotation, and thus do not suffer
from the aforementioned issues.

Homography estimation – Section 5.1: The test set
contains 1024 pairs of 640×480 images. Homographies
are generated by applying random perspective, scaling, ro-
tation, and translation to the original full-sized images,
to avoid bordering artifacts. We evaluate with the 512
top-scoring keypoints detected by SuperPoint with a Non-
Maximum Suppression (NMS) radius of 4 pixels. Corre-
spondences are deemed correct if they have a reprojection
error lower than 3 pixels. We use the OpenCV function
findHomography with 3000 iterations and a RANSAC
inlier threshold of 3 pixels.
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Indoor pose estimation – Section 5.2: The overlap score
between two images A and B is the average ratio of pix-
els in A that are visible in B (and vice versa), after ac-
counting for missing depth values and occlusion (by check-
ing for consistency in the depth). We train and evaluate
with pairs that have an overlap score in [0.4, 0.8]. For
training, we sample at each epoch 200 pairs per scene,
similarly as in [6]. The test set is generated by subsam-
pling the sequences by 15 and subsequently randomly sam-
pling 15 pairs for each of the 300 sequences. We resize
all ScanNet images and depth maps to 640×480. We de-
tect up to 1024 SuperPoint keypoints (using the publicly
available trained model2 with NMS radius of 4) and 2048
SIFT keypoints (using OpenCV’s implementation). Poses
are computed by first estimating the essential matrix with
OpenCV’s findEssentialMat and RANSAC with an
inlier threshold of 1 pixel divided by the focal length,
followed by recoverPose. In contrast with previous
works [9, 19, 3], we compute a more accurate AUC us-
ing explicit integration rather than coarse histograms. The
precision (P) is the average ratio of the number of correct
matches over the total number of estimated matches. The
matching score (MS) is the average ratio of the number of
correct matches over the total number of detected keypoints.
It does not account for the pair overlap and decreases with
the number of covisible keypoints. A match is deemed cor-
rect if its epipolar distance is lower than 5 · 10−4.

Outdoor pose estimation – Section 5.3: For training on
Megadepth, the overlap score is the ratio of triangulated
keypoints that are visible in the two images, as in [6]. We
sample pairs with an overlap score in [0.1, 0.7] at each
epoch. We evaluate on all 11 scenes of the PhotoTourism
dataset and reuse the overlap score based on bounding
boxes computed by Ono et al. [10], with a selection range
of [0.1, 0.4]. Images are resized so that their longest dimen-
sion is equal to 1600 pixels and rotated upright using their
EXIF data. We detect 2048 keypoints for both SIFT and Su-
perPoint (with an NMS radius of 3). The epipolar correct-
ness threshold is here 10−4. Other evaluation parameters
are identical to the ones used for the indoor evaluation.

Training of SuperGlue: For training on homogra-
phy/indoor/outdoor data, we use the Adam optimizer [8]
with a constant leaning rate of 10−4 for the first
200k/100k/50k iterations, followed by an exponential de-
cay of 0.999998/0.999992/0.999992 until iteration 900k.
When using SuperPoint features, we employ batches with
32/64/16 image pairs and a fixed number of 512/400/1024
keypoints per image. For SIFT features we use 1024 key-
points and 24 pairs. Due to the limited number of training
scenes, the outdoor model weights are initialized with the
homography model weights. Before the keypoint encoder,

2github.com/magicleap/SuperPointPretrainedNetwork

the keypoints are normalized by the largest dimension of the
image.

Ground truth correspondences M and unmatched sets
I and J are generated by first computing the M × N re-
projection matrix between all detected keypoints using the
ground truth homography or pose and depth. Correspon-
dences are entries with a reprojection error that is a mini-
mum along both rows and columns, and that is lower than
a given threshold: 3, 5, and 3 pixels for homographies,
indoor, and outdoor matching respectively. For homogra-
phies, unmatched keypoints are simply the ones that do not
appear in M. For indoor and outdoor matching, because
of errors in the pose and depth, unmatched keypoints must
additionally have a minimum reprojection error larger than
15 and 5 pixels, respectively. This allows us to ignore labels
for keypoints whose correspondences are ambiguous, while
still providing some supervision through the normalization
induced by the Sinkhorn algorithm.

Ablation study – Section 5.4: The “No Graph Neural Net”
baseline replaces the Graph Neural Network with a single
linear projection, but retains the Keypoint Encoder and the
Optimal Matching Layer. The “No cross-attention” baseline
replace all cross-attention layers by self-attention: it has the
same number of parameters as the full model, and acts like
a Siamese network. The “No positional encoding” baseline
simply removes the Keypoint Encoder and only uses the vi-
sual descriptors as input.

End-to-end training – Section 5.4: Two copies of Super-
Point, for detection and description, are initialized with the
original weights. The detection network is frozen and gra-
dients are propagated through the descriptor network only,
flowing from SuperGlue - no additional losses are used.
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Figure 6: More homography examples. We show point correspondences on our synthetic dataset (see Section 5.1), on real
image pairs from HPatches (see Appendix A.1), and a checkerboard image captured by a webcam. SuperGlue consistently
estimates more correct matches (green lines) and fewer mismatches (red lines), successfully coping with repeated texture,
large viewpoint, and illumination changes.
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Figure 7: More indoor examples. We show both Difficult and Very Difficult ScanNet indoor examples for which SuperGlue
works well, and three Too Difficult examples where it fails, either due to unlikely motion or lack of repeatable keypoints
(last two rows). Correct matches are green lines and mismatches are red lines. See details in Section 5.2.
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Figure 8: More outdoor examples. We show results on the MegaDepth validation and the PhotoTourism test sets. Correct
matches are green lines and mismatches are red lines. The last row shows a failure case, where SuperGlue focuses on the
incorrect self-similarity. See details in Section 5.3.
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Figure 9: Attention patterns across layers. For this image pair (correctly matched by SuperGlue), we look at three specific
keypoints that can be matched with different levels of difficulty: the easy keypoint, the medium keypoint, and the difficult
keypoint. We visualize self- and cross-attention weights (within images A and B, and from A to B, respectively) of selected
layers and heads, varying the edge opacity with αij . The self-attention initially attends all over the image (row 1), and gradu-
ally focuses on a small neighborhood around each keypoint (last row). Similarly, some cross-attention heads focus on candi-
date matches, and successively reduce the set that is inspected. The easy keypoint is matched as early as layer 9, while more
difficult ones are only matched at the last layer. Similarly as in Figure 5, the self- and cross-attention spans generally shrink
throughout the layers. They however increase in layer 11, which attends to other locations – seemingly distinctive ones – that
are further away. We hypothesize that SuperGlue attempts to disambiguate challenging matches using additional context.
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