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Content
This supplementary material complements the presenta-

tion of U-Net GAN in the main paper with the following:

• Additional quantitative results in Section A.

• Details on the training dynamics in Section B.

• Exemplar synthetic images on FFHQ in Section C and
on COCO-Animals in Section D.

• Details on the COCO-Animals dataset in Section E.

• Network architectures and hyperparameter settings in
Section F.

A. Additional Evaluations

Here we provide more detailed evaluation of the results
presented in the main paper. In Table S1 we report the in-
ception metrics for images generated on FFHQ [4], COCO-
Animals [7, 5] and CelebA [8] at resolution 256 × 256,
128 × 128, and 128 × 128, respectively. In particular, we
report the Fréchet Inception distance (FID) [2] and the In-
ception score (IS) [9] computed by both the PyTorch1 and
TensorFlow2 implementations. Note that the difference be-
tween two implementations lies in using either the Tensor-
Flow or the PyTorch in-built inception network to calculate
IS and FID, resulting in slightly different scores. In all ex-
periments, FID and IS are computed using 50k synthetic
images, following [3]. By default all reported numbers cor-
respond to the best FID achieved with 400k training iter-
ations for FFHQ and COCO-Animals, and 800k iterations
for CelebA, using the PyTorch implementation.

In the unconditional case, on FFHQ, our model achieves
FID of 7.48 (8.88 in TensorFlow), which is an improvement
of 4.0 (6.04 in TensorFlow) FID points over the BigGAN
discriminator [1]. The same effect is observed for the con-
ditional image generation setting on COCO-Animals. Here,
our U-Net GAN achieves FID of 13.73 (13.96 in Tensor-
Flow), improving 2.64 (2.46 in TensorFlow) points over

1https://github.com/ajbrock/BigGAN-PyTorch
2https://github.com/bioinf-jku/TTUR

PyTorch TensorFlow

Dataset Method FID ↓ IS ↑ FID ↓ IS ↑

FFHQ BigGAN [1] 11.48 3.97 14.92 3.96

(256× 256) U-Net GAN 7.48 4.46 8.88 4.50

COCO-Animals BigGAN [1] 16.37 11.77 16.42 11.34

(128× 128) U-Net GAN 13.73 12.29 13.96 11.77

PG-GAN [3] – – 7.30 –

CelebA COCO-GAN [6] – – 5.74 –

(128× 128) BigGAN [1] 3.70 3.08 4.54 3.23

U-Net GAN 2.03 3.33 2.95 3.43

Table S1: Evaluation results on FFHQ, COCO-Animals and
CelebA with PyTorch and TensorFlow FID/IS scores. The
difference lies in the choice of framework in which the in-
ception network is implemented, which is used to extract
the inception metrics. See Section A for discussion.

Method Dataset
FID

Best Median Mean Std
BigGAN

COCO-Animals
16.37 16.55 16.62 0.24

U-Net GAN 13.73 13.87 13.88 0.11
BigGAN

FFHQ
11.48 12.42 12.35 0.67

U-Net GAN 7.48 7.63 7.73 0.56
BigGAN

CelebA
3.70 3.89 3.94 0.16

U-Net GAN 2.03 2.07 2.08 0.04

Table S2: Best, median, mean and std of FID (5 runs).

BigGAN. To compare with other state-of-the-art models we
additionally evaluate U-Net GAN on CelebA for uncondi-
tional image synthesis. Our U-Net GAN achieves 2.95 FID
(in TensorFlow), outperforming COCO-GAN [6], PG-GAN
[3], and the BigGAN baseline [1].

Table S2 shows that U-Net GAN does not only outper-
form the BigGAN baseline in terms of the best recorded
FID, but also with respect to the mean, median and stan-
dard deviation computed over 5 independent runs. Note
the strong drop in standard deviation from 0.24 to 0.11 on
COCO-Animals and from 0.16 to 0.04 on CelebA.

https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/bioinf-jku/TTUR


B. Characterizing the Training Dynamics

Both BigGAN and U-Net GAN experience similar sta-
bility issues, with ∼ 60% of all runs being successful. For
U-Net GAN, training collapse occurs generally much ear-
lier (∼ 30k iterations) than for BigGAN (> 200k iterations,
as also reported in [1]), allowing to discard failed runs ear-
lier. Among successful runs for both models, we observe a
lower standard deviation in the achieved FID scores, com-
pared to the BigGAN baseline (see Table S2). Figure S1 de-
picts the evolution of the generator and discriminator losses
(green and blue, respectively) for U-Net GAN and BigGAN
over training. For U-Net GAN, the generator and discrimi-
nator losses are additionally split into the loss components
of the U-Net encoder DU

enc and decoder DU
dec. The U-Net

GAN discriminator loss decays slowly, while the BigGAN
discriminator loss approaches zero rather quickly, which
prevents further learning from the generator. This explains
the FID gains of U-Net GAN and shows its potential to im-
prove with longer training. The generator and discriminator
loss parts from encoder (image-level) and decoder (pixel-
level) show similar trends, i.e. we observe the same decay
for DU

enc and DU
dec losses but with different scales. This

is expected as DU
enc can easily classify image as belonging

to the real or fake class just by looking at one distinctive
trait, while to achieve the same scale DU

dec needs to make a
uniform real or fake decision on all image pixels.

Figure S1: Comparison of the generator and discriminator
loss behavior over training for U-Net GAN and BigGAN.
The generator and discriminator loss of U-Net GAN is addi-
tionally split up into its encoder- and decoder components.

C. Qualitative Results on FFHQ

Here we present more qualitative results of U-Net GAN
on FFHQ [4]. We use FFHQ for unconditional image syn-
thesis and generate images with a resolution of 256× 256.

Generated FFHQ samples

Figure S2 shows samples of human faces generated by U-
Net GAN on FFHQ. We observe diverse images of high
quality, maintaining local and global realism.

Per-pixel U-Net discriminator feedback

In Figure S3 we visualize synthetic images and their cor-
responding per-pixel feedback of the U-Net discriminator.
Note that the U-Net discriminator provides a very detailed
and spatially coherent response, which enables the genera-
tor to further improve the image quality.

Interpolations in the latent space

Figure S4 displays human faces generated by U-Net GAN
through linear interpolation in the latent space between
two synthetic samples. We observe that the interpola-
tions are semantically smooth between faces, e.g. an open
mouth gradually becomes a closed mouth, hair progres-
sively grows or gets shorter in length, beards or glasses
smoothly fade or appear, and hair color changes seamlessly.

Comparison between BigGAN and U-Net GAN

In Figure S5 we present a qualitative comparison of un-
curated images generated with the unconditional BigGAN
model [1] and our U-Net GAN. Note that the images gener-
ated by U-Net GAN exhibit finer details and maintain better
local realism.

CutMix images and U-Net discriminator predictions

In Figure S6 we show more examples of the CutMix im-
ages and the corresponding U-Net based discriminator DU

predictions. Note that in many cases, the decoder output for
fake image patches is darker than for real image ones. How-
ever, the predicted intensity for an identical local patch can
change for different mixing scenarios. This indicates that
the U-Net discriminator takes contextual information into
account for local decisions.



Figure S2: Images generated by U-Net GAN trained on FFHQ with resolution 256× 256.



Figure S3: Samples generated by U-Net GAN and the corresponding real-fake predictions of the U-Net decoder. Brighter
colors correspond to the discriminator confidence of pixel being real (and darker of being fake).



Figure S4: Images generated with U-Net GAN on FFHQ with resolution 256× 256 when interpolating in the latent space.



Figure S4: More images generated with U-Net GAN on FFHQ with resolution 256 × 256 when interpolating in the latent
space.



BigGAN

U-Net GAN

Figure S5: Qualitative comparison of uncurated images generated with the unconditional BigGAN model (top) and our
U-Net GAN (bottom) on FFHQ with resolution 256 × 256. Note that the images generated by U-Net GAN exhibit finer
details and maintain better local realism.
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Figure S6: Visualization of the CutMix augmentation and the predictions of the U-Net discriminator on CutMix images.
1st row: real and fake samples. 2nd&3rd rows: sampled real/fake CutMix ratio r and corresponding binary masks M (color
code: white for real, black for fake). 4th row: generated CutMix images from real and fake samples. 5th&6th row: the
corresponding real/fake segmentation maps of the U-Net GAN decoder DU

dec with the corresponding predicted classification
scores by the encoder DU

enc below.



D. Qualitative Results on COCO-Animals

Here we present more qualitative results of U-Net GAN
on COCO-Animals [7, 5]. We use COCO-Animals for class
conditional image synthesis and generate images with the
resolution of 128× 128.

Generated COCO-Animals samples

Figure S7 shows generated samples of different classes on
COCO-Animals. We observe images of good quality and
high intra-class variation. We further notice that employing
the class-conditional projection (as used in BigGAN) in the
pixel output space of the decoder does not introduce class
leakage or influence the class separation in any other way.
These observations further confirm that our U-Net GAN is
effective in class-conditional image generation as well.

Per-pixel U-Net discriminator feedback

Figure S8 shows generated examples and the correspond-
ing per-pixel predictions of the U-Net discriminator. We
observe that the resulting maps often tend to exhibit a bias
towards objects.

Interpolations in the latent space

Figure S9 displays images generated on COCO-Animals by
U-Net GAN through linear interpolation in the latent space
between two synthetic samples. We observe that the inter-
polations are semantically smooth between different classes
of animals, e.g. background seamlessly changes between
two scenes, number of instances gradually increases or de-
creases, shape and color of objects smoothly changes from
left to right.

E. Details on the COCO-Animals Dataset

COCO-Animals is a medium-sized (∼ 38k) dataset
composed of 10 animal classes, and is intended for ex-
periments that demand a high-resolution equivalent for
CIFAR10. The categories are bird, cat, dog, horse, cow,
sheep, giraffe, zebra, elephant, and monkey. The images
are taken from COCO [7] and the OpenImages [5] subset
that provides semantic label maps and binary mask and is
also human-verified. The two datasets have a great overlap
in animal classes. We take all images from COCO and the
aforementioned OpenImages split in the categories horse,
cow, sheep, giraffe, zebra and elephant. The monkey images
are taken over directly from OpenImages, since this cate-
gory contained more training samples than the next biggest
COCO animal class bear. The class bear and monkey are
not shared between COCO and OpenImages. Lastly, the
categories bird, cat and dog contained vastly more sam-
ples than all other categories. For this reason, we took

over only a subset of the total of all images in these cate-
gories. These samples were picked from OpenImages only,
for their better visual quality. To ensure good quality of the
picked examples, we used the provided bounding boxes to
filter out images in which the animal of interest is either
too small or too big (> 80%, < 30% of the image area for
cats, > 70%, < 50% for birds and dogs). The thresholds
were chose such that the number of appropriate images is
approximately equal.

F. Architectures and Training Details

Architecture details of the BigGAN model [1] and our
U-Net discriminator are summarized in Table S3 and Table
S4. From these tables it is easy to see that the encoder and
decoder of the U-Net discriminator follow the original Big-
GAN discriminator and generator setups, respectively. One
difference is that the number of input channels in the U-Net
decoder is doubled, since encoder features are concatenated
to the input features.

Table S4 presents two U-Net discriminator networks: a
class-conditional discriminator for image resolution 128 ×
128, and an unconditional discriminator for resolution
256 × 256. The decoder does not have 3 output chan-
nels (like the BigGAN generator that it is copied from),
but ch = 64 channels, resulting in a feature map h of
size 64 × 128 × 128, to which a 1 × 1 convolution is ap-
plied to reduce the number of channels to 1. In the class-
conditional architecture, a learned class-embedding is mul-
tiplied with the aforementioned 64-dimensional output h at
every spatial position, and summed along the channel di-
mension (corresponding to the inner product). The resulting
map of size 1×128×128 is added to the output, leaving us
with 128× 128 logits.

We follow [1] for setting up the hyperparameters for
training U-Net GAN, which are summarized in Table S5.

Hyperparameter Value
Optimizer Adam (β1 = 0, β2 = 0.999)
G’s learning rate 1e-4 (256), 5e-5 (128)
D’s learning rate 5e-4 (256), 2e-4 (128)
Batch size 20 (256), 80 (128)
Weight Initialization Orthogonal

Table S5: Hyperparameters of U-Net GAN

Regarding the difference between class-conditional and
unconditional image generation, it is worth noting that the
CutMix regularization is applied only to samples within the
same class. In other words, real and generated samples are
mixed only within the class (e.g. real and fake zebras, but
not real zebras with fake elephants).



Figure S7: Images generated with U-Net GAN trained on COCO-Animals with resolution 128× 128.



Figure S8: Generated samples on COCO-Animals and the corresponding U-Net decoder predictions. Brighter colors corre-
spond to the discriminator confidence of pixel being real (and darker of being fake).

Figure S9: Images generated with U-Net GAN on COCO-Animals with resolution 128×128 when interpolating in the latent
space between two synthetic samples (left to right).



(a) BigGAN Generator (128× 128, class-conditional)

z ∈ R120 ∼ N (0, I)

Embed(y) ∈ R128

Linear (20 + 128)→ 4× 4× 16ch

ResBlock up 16ch→ 16ch

ResBlock up 16ch→ 8ch

ResBlock up 8ch→ 4ch

ResBlock up 4ch→ 2ch

Non-Local Block (64× 64)

ResBlock up 2ch→ ch

BN, ReLU, 3× 3 Conv ch→ 3

Tanh

(b) BigGAN Discriminator (128× 128, class-conditional)

RGB image x ∈ R128×128×3

ResBlock down ch→ 2ch

Non-Local Block (64× 64)

ResBlock down 2ch→ 4ch

ResBlock down 4ch→ 8ch

ResBlock down 8ch→ 16ch

ResBlock down 16ch→ 16ch

ReLU, Global sum pooling

Embed(y)·h + (linear→ 1)

(c) BigGAN Generator (256× 256, unconditional)

z ∈ R140 ∼ N (0, I)

Linear (20 + 128)→ 4× 4× 16ch

ResBlock up 16ch→ 16ch

ResBlock up 16ch→ 8ch

ResBlock up 8ch→ 8ch

ResBlock up 8ch→ 4ch

ResBlock up 4ch→ 2ch

Non-Local Block (128× 128)

ResBlock up 2ch→ ch

BN, ReLU, 3× 3 Conv ch→ 3

Tanh

(d) BigGAN Discriminator (256× 256, unconditional)

RGB image x ∈ R256×256×3

ResBlock down ch→ 2ch

ResBlock down 2ch→ 4ch

Non-Local Block (64× 64)

ResBlock down 4ch→ 8ch

ResBlock down 8ch→ 8ch

ResBlock down 8ch→ 16ch

ResBlock down 16ch→ 16ch

ReLU, Global sum pooling

linear→ 1

Table S3: The BigGAN [1] generator and discriminator architectures for class-conditional and unconditional tasks of gener-
ating images at different resolutions. Top (a and b): The class-conditional BigGAN model for resolution 128× 128. Bottom
(c and d): The BigGAN model for resolution 256× 256, modified to be unconditional.



(a) U-Net GAN Discriminator (256× 256, unconditional)

RGB image x ∈ R256×256×3

ResBlock down ch→ 2ch

ResBlock down 2ch→ 4ch

Optional Non-Local Block (64× 64)

ResBlock down 4ch→ 8ch

ResBlock down 8ch→ 8ch

ResBlock down 8ch→ 16ch *(see below)

ResBlock up 16ch→ 8ch

ResBlock up (8 + 8)ch→ 8ch

ResBlock up (8 + 8)ch→ 4ch

ResBlock up (4 + 4)ch→ 2ch

ResBlock up (2 + 2)ch→ ch

ResBlock up (ch+ ch)→ ch

ResBlock ch→ 1

Sigmoid

* ReLU, Global sum pooling, linear→ 1

(b) U-Net GAN Discriminator(128× 128, class-conditional)

RGB image x ∈ R128×128×3

ResBlock down ch→ 2ch

Optional Non-Local Block (64× 64)

ResBlock down 2ch→ 4ch

ResBlock down 8ch→ 8ch

ResBlock down 8ch→ 16ch *(see below)

ResBlock up 16ch→ 8ch

ResBlock up (8 + 8)ch→ 4ch

ResBlock up (4 + 4)ch→ 2ch

ResBlock up (2 + 2)ch→ ch

ResBlock up (ch+ ch)→ ch

Embed(y)·h + (Conv ch→ 1)

Sigmoid

* ReLU, Global sum pooling

Embed(y)·h + (linear→ 1)

Table S4: The U-Net GAN discriminator architectures for class-conditional (a) and unconditional (b) tasks of generating
images at resolution 128× 128 and 256× 256, respectively.
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