
Supplemental Material for:
Why Having 10,000 Parameters in Your Camera Model is Better Than Twelve

Thomas Schöps1 Viktor Larsson1 Marc Pollefeys1,2 Torsten Sattler3
1Department of Computer Science, ETH Zürich 3Chalmers University of Technology

2Microsoft Mixed Reality & AI Zurich Lab

In this supplemental material, we present additional in-
formation that did not fit into the paper for space reasons.
In Sec. 1, we present the feature detection process that we
use to find the approximate locations of star center features
in images of our calibration pattern. In Sec. 2, we present
the initialization process for camera calibration. In Sec. 3,
we discuss additional details of our bundle adjustment. In
Sec. 4, we present larger images for the camera model vali-
dation experiment. In Sec. 5, we present more details of the
results of the Structure-from-Motion experiment that tests
the impact of different camera models in an application con-
text.

1. Feature detection

First, we find all AprilTags in the image using the April-
Tag library [4]. The four corners of each detected April-
Tag provide correspondences between the known calibra-
tion pattern and the image. We use these to compute a
homography that approximately maps points on the pattern
into the image. This will only be perfectly accurate for pin-
hole cameras and planar patterns. However, in general it
will be locally appropriate next to the correspondences that
were used to define the homography. With this, we roughly
estimate the positions of all star features that are directly ad-
jacent to an AprilTag. Each feature location is then refined
and validated with the refinement process detailed below.
After refinement, the final feature positions provide addi-
tional correspondences between the pattern and the image.
For each newly detected and refined feature location, we
compute a new local homography from the correspondences
that are closest to it in order to predict its remaining adja-
cent feature locations that have not been detected yet. We
then repeat the process of feature refinement, local homog-
raphy estimation, and growing, until no additional feature
can be detected.

The initial feature locations predicted by the above pro-
cedure can be relatively inaccurate. Thus, we first apply a
well-converging matching process based on the known pat-
tern appearance to refine and validate the feature predic-

known pattern rendering image

(a) (b)

Figure 1. Sketch of matching-based feature refinement. (a) Based
on an estimate for a local homography between the pattern and the
image, the known pattern is rendered with supersampling (subpix-
els illustrated for center sample only for clarity). The result are
rendered grayscale samples shown in the center. (b) The samples
are (rigidly) moved within the image to find the best matching fea-
ture position, while accounting for affine brightness differences.

tions, before we apply an accurate refinement step with a
smaller convergence region afterwards.

Matching-based refinement and validation. The goal of
matching-based refinement is to improve an initial feature
position estimate and reject wrong estimates. As input, the
process described above yields an initial rough estimate of
the feature position and a homography that locally approx-
imates the mapping between the known calibration pattern
and the image. The matching process uses the homography
to render a synthetic image of the pattern in a small win-
dow around the feature position. Then it locally optimizes
the alignment between this rendering and the actual image.
This is illustrated in Fig. 1.

In detail, we define a local window for refinement, for
which we mostly use 21×21 pixels. The optimum size de-
pends on many factors such as the blur introduced by out-
of-focus imaging, internal image processing in the camera,
and clarity of the calibration pattern. It is thus a parame-
ter that should be tuned to the specific situation. Within this
window, we sample as many random points as there are pix-
els in the window. We assume that the window is centered
on the feature location, and given the local homography es-
timate, we determine the intensity that would be expected
for a perfect pattern observation at each sample location.



We use 16x supersampling to more accurately predict the
intensities.

Next, we match this rendering with the actual image ob-
servation by optimizing for a 2-dimensional translational
shift x of all samples in the image. In addition, since the
black and white parts of the pattern will rarely be perfectly
black and white under real imaging conditions, we optimize
for an affine brightness transform to bring the sample in-
tensities and image intensities into correspondence. In to-
tal, we thus optimize for four parameters with the following
cost function:

Cmatch(x, f, b) =

n∑
i

(f · pi(x) + b− qi)
2

, (1)

where f and b are the affine factor and bias, pi(x) is the bi-
linearly interpolated image intensity at the sample position
i with the current translation shift x, and qi is the rendered
intensity of sample i. Given the initial translation offset
x = 0, we can initialize f and b directly by minimizing
Cmatch. Setting both partial derivatives to zero eventually
yields (dropping i from the notation for brevity):

f =

∑
(qp)− 1

n

∑
p
∑

q∑
(pp)− 1

n (
∑

p)2
, b =

∑
q − f

∑
p

n
. (2)

Subsequently, we optimize all four parameters with the
Levenberg-Marquardt method. The factor parameter f is
not constrained in this optimization and may become nega-
tive, indicating that we have likely found a part of the image
that looks more like the inverse of a feature than the fea-
ture itself. While this may appear like a deficiency, since
pushing the parameter to be positive might have nudged the
translation x to go towards the proper feature instead, we
can actually use it to our advantage, as we can use the con-
dition of f to be positive as a means to reject outliers. This
allows us to obtain virtually outlier-free detections.

Note that for performance reasons, in this part of the re-
finement we do not optimize for the full homography that
is used at the start to render the pattern prediction. This
changes in the following symmetry-based refinement step,
which is described in Sec. 3.2 in the paper.

2. Calibration initialization
In this section, we describe how we obtain an initial cam-

era calibration that is later refined with bundle adjustment,
as described in the paper.

For each image, we first interpolate the feature detec-
tions over the whole pattern area for initialization purposes,
as in [2]. This is important to get feature detections at equal
pixels in different images, which is required for the relative
pose initialization approach [2] that is used later. Since we
know that the calibration pattern is approximately planar,

we can use a homography to approximately map between
the pattern and the image (neglecting lens distortion). Each
square of four adjacent feature positions is used to define a
homography, which we use for mapping within this square.
This allows to obtain dense approximate pattern coordinates
for all image pixels at which the pattern is visible. These
approximately interpolated matches are only used for ini-
tialization, not for the subsequent refinement.

We then randomly sample up to 500 image triples from
the set of all available images. We score each triple based on
the number of pixels that have a dense feature observation in
each of the three images. The image triple with the highest
number of such pixels is used for initialization.

Since all tested cameras were near-central, we always
assume a central camera during initialization (and switch to
the non-central model later if requested). We thus use the
linear pose solver for central cameras and planar calibration
targets from [2]. For each image pixel which has an (in-
terpolated) feature observation in each of the three images
chosen above, the corresponding known 3D point on the
calibration pattern is inserted into a 3D point cloud for each
image. The initialization approach [2] is based on the fact
that for a given observation, the corresponding points in the
three point clouds must lie on the same line in 3D space. It
solves for an estimate of the relative pose of the three ini-
tial images, and the position of the camera’s optical center.
This allows to project the pattern into image space for each
pixel with a matched pattern coordinate, which initializes
the observation direction for these pixels.

Next, we extend the calibration by localizing additional
images using the calibration obtained so far with standard
techniques [1]. Each localized image can be used to project
the calibration pattern into image space, as above, and ex-
tend the calibrated image region. For pixels that already
have an estimate of their observation direction, we use the
average of all directions to increase robustness. If more than
one calibration pattern is used, we can determine the rela-
tive pose between the targets from images in which multiple
targets are visible. We localize as many images as possible
with the above scheme.

As a result, we obtain a per-pixel camera model which
stores an observation direction for each initialized pixel.
We then fit the final camera model to this initialization
by first setting the direction of each grid point in the fi-
nal model to the direction of its corresponding pixel in the
per-pixel model. If the pixel does not have a direction esti-
mate, we guess it based on the directions of its neighbors.
Finally, using a non-linear optimization process with the
Levenberg-Marquardt method, we optimize the model pa-
rameters such that the resulting observation directions for
each pixel match the per-pixel initialization as closely as
possible.

Due to the size of the local window in feature refinement



Used Field-of-view (FOV)
Label resolution (approximate) Type Description
D435-C 1920× 1080 70◦ × 42◦ RGB Color camera of an Intel RealSense D435
D435-I 1280× 800 90◦ × 64◦ Mono Infrared camera of an Intel RealSense D435
SC-C 640× 480 71◦ × 56◦ RGB Color camera of an Occipital Structure Core (color version)
SC-I 1216× 928 57◦ × 45◦ Mono Infrared camera of an Occipital Structure Core (color version)
Tango 640× 480 131◦ × 99◦ Mono Fisheye camera of a Google Tango Development Kit Tablet
FPGA 748× 468 111◦ × 66◦ Mono Camera attached to an FPGA
GoPro 3000× 2250 123◦ × 95◦ RGB GoPro Hero4 Silver action camera
HTC One M9 3840× 2688 64◦ × 47◦ RGB Main (back) camera of an HTC One M9 smartphone

Table 1. Specifications of the cameras used in the evaluation: The resolution at which we used them, and the approximate field-of-view,
which is measured horizontally and vertically at the center of the image. SC-I provides images that are pre-undistorted by the camera.

(cf . the section on feature extraction in the paper), features
cannot be detected close to the image borders (since the
window would leave the image). We thus restrict the fitted
model to the axis-aligned bounding rectangle of the feature
observations.

3. Bundle adjustment details

Gauge freedom. As mentioned in the paper, in our set-
ting there are more dimensions of Gauge freedom than for
typical Bundle Adjustment problems. Note that we do not
use any scaling information for the pattern(s) during bun-
dle adjustment, but scale its result once as a post-processing
step based on the known physical pattern size. For the cen-
tral camera model, the Gauge freedom dimensions are thus:
3 for global translation, 3 for global rotation, 1 for global
scaling, and 3 for rotating all camera poses in one direc-
tion while rotating all calibrated observation directions in
the opposite direction. For the non-central camera model,
the Gauge freedom dimensions are those listed for the cen-
tral model and additionally 3 for moving all camera poses
in one direction while moving all calibrated lines in the op-
posite direction. Furthermore, if the calibrated lines are
(nearly) parallel, there can be more directions, since then
the cost will be invariant to changes of the 3D line origin
points within the lines.

Calibration data bias. For parametric models, whose pa-
rameters affect the whole image area, different densities in
detected features may introduce a bias, since the camera
model will be optimized to fit better to areas where there
are more feature detections than to areas where there are
less. Note that this is a reason for image corners typically
being modeled badly with these models, since there typi-
cally are very few observations in the corners compared to
the rest of the image, and the corners are at the end of the
range of radius values that are relevant for radial distortion.

For our generic models, while there is some dependence
among different image areas due to interpolation within the
grid, they are mostly independent. Thus, this kind of cal-
ibration data bias should not be a concern for our models.
However, unless using regularization, all parts of the image

need to contain feature detections to be well-constrained
(which is again most difficult for the image corners).

4. Camera model validation
In Fig. 2, we present larger images for the camera model

validation experiment in the paper (Fig. 7 in the paper), such
that more details are visible when zooming in a digital ver-
sion of the PDF. Furthermore, results for additional cameras
are included in the figure. The specifications of all cameras
in the figure are given in Tab. 1. Note that the “Tango” cam-
era has a fisheye lens and shows hardly any image informa-
tion in the corners. Thus, there are no feature detections in
the image corners, which causes large Voronoi cells to be
there in Fig. 2.

5. Example Application: Camera Pose Estima-
tion

In Fig. 3, we present example images of the sparse 3D
reconstructions that we evaluated in the paper to determine
how much the results of bundle adjustment in Structure-
from-Motion are affected by the choice of camera model.
The videos used for these reconstructions were recorded
with the SC-C and D435-I cameras by walking in a mostly
straight line on a forest road, looking either sideways or for-
ward. For D435-I, we use 10 videos with 100 frames each,
whereas for SC-C, we use 7 videos with 264 frames on av-
erage.

References
[1] Laurent Kneip and Paul Furgale. OpenGV: A unified and gen-

eralized approach to real-time calibrated geometric vision. In
ICRA, 2014. 2

[2] Srikumar Ramalingam and Peter Sturm. A unifying model for
camera calibration. PAMI, 39(7):1309–1319, 2016. 2

[3] Shinji Umeyama. Least-squares estimation of transformation
parameters between two point patterns. PAMI, 13(4):376–380,
1991. 5

[4] John Wang and Edwin Olson. AprilTag 2: Efficient and robust
fiducial detection. In IROS, October 2016. 1



OpenCV Thin-Prism Fisheye Central Radial Central Generic Central Generic Central Generic Noncentral Generic
(12 parameters) (12 parameters) (258 parameters) ca. 30 px/cell ca. 20 px/cell ca. 10 px/cell ca. 20 px/cell

D
43

5-
C

(9
68

im
ag

es
)

4.8k 10.4k 40.9k 25.9k
Errors1 0.092 / 0.091 / 0.748 0.163 / 0.161 / 1.379 0.068 / 0.070 / 0.968 0.030 / 0.039 / 0.264 0.030 / 0.039 / 0.265 0.029 / 0.040 / 0.252 0.024 / 0.032 / 0.184

D
43

5-
I

(1
34

7
im

ag
es

)

2.5k 5.3k 20.5k 13.3k
Errors1 0.042 / 0.036 / 0.488 0.032 / 0.026 / 0.365 0.042 / 0.037 / 0.490 0.023 / 0.018 / 0.199 0.023 / 0.018 / 0.198 0.023 / 0.018 / 0.189 0.022 / 0.017 / 0.179

SC
-C

(1
84

9
im

ag
es

)

0.7k 1.5k 5.9k 3.8k
Errors1 0.083 / 0.085 / 0.217 0.083 / 0.084 / 0.215 0.082 / 0.084 / 0.200 0.069 / 0.072 / 0.055 0.069 / 0.072 / 0.054 0.068 / 0.072 / 0.053 0.065 / 0.069 / 0.040

SC
-I

(2
43

4
im

ag
es

)

2.5k 5.6k 21.8k 14.0k
Errors1 0.069 / 0.064 / 0.589 0.053 / 0.046 / 0.440 0.069 / 0.064 / 0.585 0.035 / 0.030 / 0.133 0.035 / 0.030 / 0.139 0.034 / 0.030 / 0.137 0.030 / 0.026 / 0.120

Ta
ng

o
(2

29
3

im
ag

es
)

0.7k 1.6k 6.0k 4.0k

Errors1 0.067 / 0.062 / 0.776 0.034 / 0.031 / 0.367 0.033 / 0.029 / 0.331 0.022 / 0.021 / 0.130 0.022 / 0.021 / 0.127 0.022 / 0.021 / 0.125 0.020 / 0.019 / 0.131

FP
G

A
(2

14
2

im
ag

es
)

0.8k 1.8k 6.8k 4.6k

Errors1 0.024 / 0.022 / 0.442 0.019 / 0.018 / 0.379 0.021 / 0.019 / 0.317 0.016 / 0.015 / 0.091 0.016 / 0.015 / 0.091 0.015 / 0.015 / 0.091 0.012 / 0.012 / 0.044

Central Generic Central Generic Central Generic Noncentral Generic
OpenCV Thin-Prism Fisheye Central Radial ca. 60 px/cell ca. 50 px/cell ca. 40 px/cell ca. 50 px/cell

G
oP

ro
(4

40
im

ag
es

)

3.9k 5.4k 8.4k 13.5k

Errors1 0.113 / 0.115 / 0.819 0.105 / 0.108 / 0.773 0.106 / 0.108 / 0.759 0.091 / 0.095 / 0.676 0.091 / 0.095 / 0.679 0.091 / 0.096 / 0.672 0.060 / 0.066 / 0.642

H
T

C
O

ne
M

9
(1

95
im

ag
es

)

6.0k 8.6k 13.2k 21.4k

Errors1 0.178 / 0.161 / 1.174 0.360 / 0.298 / 1.830 0.089 / 0.095 / 0.694 0.043 / 0.045 / 0.378 0.043 / 0.045 / 0.378 0.043 / 0.045 / 0.377 0.039 / 0.039 / 0.352

Figure 2. Directions (encoded as colors, see legend on the left) of all reprojection errors for calibrating the camera
defined by the row with the model defined by the column. Each pixel shows the direction of the closest reprojection
error (i.e., the images are Voronoi diagrams) from all used images. Ideally, the result is free from any systematic
pattern. Patterns indicate biased results arising from not being able to model the true camera. Parameter counts for
generic models are given in the images. 1Median training error [px] / test error [px] / biasedness.



Figure 3. Example reconstructions of forest scenes used for the Structure-from-Motion experiment in the paper, bundle-adjusted with a
noncentral-generic and a Thin-Prism-Fisheye calibration. For the noncentral-generic model, camera poses are shown in blue and recon-
structed points in light blue. For the Thin-Prism-Fisheye model, camera poses are shown in red and reconstructed points in light red. The
two images on the top show reconstructions of videos by the SC-C camera. These reconstruction pairs are aligned by matching the camera
positions with the Umeyama method [3] to visualize the difference in the shape of the trajectories. The two images on the bottom show
reconstructions of a video by the D435-I camera. Since the differences in shape are smaller for this camera, these reconstructions are
aligned at the first camera pose of the video (on the right side) to visualize the accumulated difference when starting from the same pose.


