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Abstract

In the supplementary material, we provide further in-
sights into the architectural design choices we make in or-
der to leverage the potential of combining geodesic and Eu-
clidean information. Furthermore, we present detailed net-
work descriptions used for the ablation study as well as the
official benchmarks. Finally, we show additional scores and
qualitative results on all three benchmarks.

1. Architectural design choices
In this section, we give more details about our architec-

tural design choices. 1 By altering the filter ratio between
geodesic and Euclidean convolutions for each mesh level,
we further motivate the assumptions about the characteris-
tics of Euclidean and geodesic convolutions and back them
up with empirical evidence. 2 We show the impact of
the number of mesh levels for the DCM-Net architecture.
3 We compare activation functions in our architecture.

Ratio between geodesic and Euclidean filters. Following
the intuition that geodesic convolutions mainly benefit from
high-frequency mesh information in order to learn the inher-
ent shape of objects, we want to learn more geodesic than
Euclidean features in high resolution mesh levels. Con-
trastingly, Euclidean features are beneficial for localizing
objects in the scene which is better performed in lower res-
olutions. In order to verify this intuition, we present the
results of an experiment in which we systemically modified
the ratio of geodesic and Euclidean filters per mesh level.

In Table 1, more geodesic filters in the first two levels
and more Euclidean filters in later two levels bring signifi-
cant performance gains over other ratio settings. We see this
as a clear indicator that our assumption about the inherent
properties about Euclidean and geodesic convolutions hold.

Number of mesh levels. In Table 2, we experimentally
show the importance of multi-scale hierarchies for seman-
tic segmentation for meshed point clouds. We see a clear
trend that an increased number of mesh levels with differ-
ent resolutions bring a significant performance gain.

Geodesic EuclideanGeodesic Euclidean Ratio

level 1-2 level 3-4 mIoU (± stdev) ∆

25% 75%25% 75% 75% 25%75% 25% 66.0 (± 0.14) +2.3

75% 25%75% 25% 75% 25%75% 25% 66.1 (± 0.19) +2.2

25% 75%25% 75% 25% 75%25% 75% 66.9 (± 0.20) +1.4

50% 50%50% 50% 50% 50%50% 50% 67.5 (± 0.13) +0.8

75% 25%75% 25% 25% 75%25% 75% 68.3(± 0.12)

Table 1: Geodesic/Euclidean filter ratio per mesh level.
Geodesic convolutions are particularly useful in early mesh levels,
when high frequency signals of the mesh are still preserved. In
later mesh levels, we benefit from Euclidean convolutions for lo-
calizing objects better. This observation is materialized in a larger
ratio of geodesic filters in early levels, whereas we use more Eu-
clidean filters in later levels. (Level 1-2 use 64 and level 3-4 use
96 filters in total.)

#level mIoU (± stdev) ∆

2 54.4 (± 0.07) +12.9
3 64.0 (± 0.14) +3.3
4 67.3(± 0.22)

Table 2: Influence of the number of mesh levels. We observed
that the multi-scale architecture has a strong impact on the perfor-
mance of the algorithm. With decreasing effect, more mesh lev-
els bring performance gains. (Experiments where conducted with
QEM pooling and geodesic/radius neighborhoods in our DCM-
Net.)

Activation functions. Recent publications on 3D scene
segmentation rely on Leaky ReLU activation functions [13].
In Table 3, we compare standard ReLU with LeakyReLU
activation functions. We conclude that for our architecture
LeakyReLU activations do not bring any benefits and de-
crease the performance by 1.6% mIoU.

2. Detailed network descriptions

In the ablation study of the main paper, we focus partic-
ularly on the comparability of our proposed networks. We
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activation function mIoU (± stdev) ∆

Leaky ReLU 65.7 (± 0.14) +1.4
ReLU 67.3(± 0.22)

Table 3: Comparison of activation functions. As Leaky ReLU
gains popularity, we compare it with standard ReLU activation
functions. We conclude that default ReLU units work significantly
better for our architecture. (Experiments are conducted with QEM
pooling and geodesic/radius neighborhoods in a DCM-Net.)
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Figure 1: Runtime wrt. the number of vertices. We see a linear
relationship between the forward pass runtime for full rooms of the
ScanNet v2 validation set and the number of vertices in the input.

compare basic instantiations of SCM-Nets with its DCM-
Net equivalents in the ablation study (see Table 5). Note
that we ensure the same size of hidden and output channels
for each edge convolution and dual convolution. That is, the
128 hidden and 64 output channels of single edge convolu-
tions of the SCM-Nets are halved resulting in 64 hidden and
32 output features for geodesic and Euclidean filters of the
dual convolutions. Thus, DCM-Nets have 15% less param-
eters than their SCM-Net equivalents.

However, we use extended networks for obtaining final
scores on the benchmarks. Motivated by Table 1, we ad-
ditionally vary the ratio of geodesic and Euclidean filters
and changed the number of features in each mesh level. In
the following paragraphs, we give detailed network descrip-
tions for each benchmark.

Network architectures for ScanNet / Matterport3D. We
use the DCM-Net with 75% geodesic out of 48 features in
the first two mesh levels and 25% geodesic out of 96 fea-
tures in the last two mesh levels. We use batch normal-
ization and ReLU activations for the edge convolutions. In
Table 6a, we show the detailed network architecture for the
ScanNet and Matterport3D benchmark.

Special provisions for S3DIS. In contrast to ScanNet and
Matterport3D, S3DIS is characterized by the comparably
lower resolution of its underlying mesh structure. In or-
der to use the ground truth information of the official point
clouds sampled from these meshes, we artificially increase
the resolution of the mesh by splitting edges exactly in the
middle if the edge length does not fall under 2 cm. We cre-

dataset single run majority ∆

ScanNet [4] (test) 65.3 65.8 0.5
S3DIS [1] (Area-5) 63.8 64.0 0.2
S3DIS [1] (k-fold) 69.4 69.7 0.3

Matterport3D [2] 65.5 66.2 0.7

Table 4: Majority voting. By using majority voting with 100
runs on augmented scenes, we experience performance gains up to
0.5% mIoU on ScanNet and S3DIS. Our scores on Matterport3D
increase by 0.7% mAcc compared to the single run variant with
no test time augmentations.

ate new triangles by connecting the old vertices with their
adjacent vertices at the midst of the edges. Thus, we ob-
tain 4 smaller triangles from the original triangle. We sub-
sequently interpolate the ground truth information on this
newly created mesh. In Figure 2, we provide an illustration
of the preprocessing pipeline for S3DIS.

Since the original resolution of the mesh is low, we do
not benefit from increasing the number of geodesic filters
in the early levels, as we motivate for ScanNet in Table 1.
Thus, we set the ratio of geodesic convolutions in each level
to 50%, similarly to the ablation study in the main paper. In
Table 6b, we provide the adapted network structure.

3. Runtime
In Figure 1, we provide forward pass times for our Scan-

Net benchmark model with respect to the input size. We see
a linear relationship between the number of input vertices
and the runtime which is always well under 0.7 seconds for
all scans. Overall, the mean runtime for the ScanNet val-
idation set is 211ms with an average input size of 39161
vertices. We perform this experiment with a Tesla V100.

4. Quantitative and qualitative results
We provide additional segmentation results on Stanford

Large-Scale 3D Indoor Spaces (S3DIS) to allow an in-depth
comparison with competitive approaches. In Table 7 and 8,
we report class-wise segmentation results on S3DIS k-fold
and Area 5. Moreover, we show further qualitative results
on S3DIS [1] and Matterport3D [2] in Figures 3 and 4.

Majority Voting. To obtain the final scores for the bench-
marks, we leverage majority voting with 100 runs of the best
performing model on augmented test scenes. In Table 4,
we compare single runs of the models on non-augmented
scenes against the majority voting method explained before.
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Figure 2: Preprocessing Pipeline for S3DIS. Our approach requires meshes as input for which the S3DIS data set does not provide an
RGB + Label format. Therefore, we establish a preprocessing pipeline in order to leverage low-resolution meshes given by the dataset.
Here, we perform midpoint subdivision to artificially enhance the resolution of the mesh, before interpolating RGB colors as well as labels
from the ground truth point cloud onto the mesh.

#level level type module type filters

1 encoder edge+BN+ReLU (9, 128, 64)
1 encoder edge+BN+ReLU (128, 128, 64)
1 encoder edge+BN+ReLU (128, 128, 64)

2 encoder edge+BN+ReLU (128, 128, 64)
2 encoder edge+BN+ReLU (128, 128, 64)
2 encoder edge+BN+ReLU (128, 128, 64)

3 encoder edge+BN+ReLU (128, 128, 64)
3 encoder edge+BN+ReLU (128, 128, 64)
3 encoder edge+BN+ReLU (128, 128, 64)

4 encoder edge+BN+ReLU (128, 128, 64)
4 encoder edge+BN+ReLU (128, 128, 64)
4 encoder edge+BN+ReLU (128, 128, 64)

3 decoder edge+BN+ReLU (256, 128, 64)
3 decoder edge+BN+ReLU (128, 128, 64)
3 decoder edge+BN+ReLU (128, 128, 64)

2 decoder edge+BN+ReLU (256, 128, 64)
2 decoder edge+BN+ReLU (128, 128, 64)
2 decoder edge+BN+ReLU (128, 128, 64)

1 decoder edge+BN+ReLU (256, 128, 64)
1 decoder edge+BN+ReLU (128, 128, 64)
1 decoder edge+BN+ReLU (128, 128, 64)

1 final Lin+BN+ReLU (64, 32)
1 final Lin (32, 21)

# parameters: 564,949

(a) SCM-Net architecture. We use SCM-Nets for the ablation
study. Here, we only consider either geodesic or Euclidean neigh-
borhood information and do not fuse this information.

#level level type module type filters

1 encoder edge+BN+ReLU 2 ∗ (9, 64, 32)
1 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
1 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)

2 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
2 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
2 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)

3 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
3 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
3 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)

4 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
4 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
4 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)

3 decoder edge+BN+ReLU 2 ∗ (256, 64, 32)
3 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)
3 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)

2 decoder edge+BN+ReLU 2 ∗ (256, 64, 32)
2 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)
2 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)

1 decoder edge+BN+ReLU 2 ∗ (256, 64, 32)
1 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)
1 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)

1 final Lin+BN+ReLU (64, 32)
1 final Lin (32, 21)

# parameters: 478,933

(b) DCM-Net architecture. We perform convolutions in the
geodesic and Euclidean space simultaneously and subsequently
concatenate the features. Note that the total size of hidden and
output features for each dual convolution equals its SCM-Net edge
convolution equivalent. We are therefore able to perform fair com-
parisons between these two types.

Table 5: Architectures for the ablation study. In our ablation study, we experimentally prove the effectiveness of combining
geodesic and Euclidean convolutions. We propose SCM-Nets for applying convolutions either in the geodesic or Euclidean
space and DCM-Nets which jointly perform convolutions in the geodesic and Euclidean space.



filters

#level level type geodesic Euclidean

1 encoder (9, 96, 48) (9, 32, 16)
1 encoder (128, 96, 48) (128, 32, 16)
1 encoder (128, 96, 48) (128, 32, 16)

2 encoder (128, 96, 48) (128, 32, 16)
2 encoder (128, 96, 48) (128, 32, 16)
2 encoder (128, 96, 48) (128, 32, 16)

3 encoder (128, 48, 24) (128, 144, 72)
3 encoder (192, 48, 24) (192, 144, 72)
3 encoder (192, 48, 24) (192, 144, 72)

4 encoder (192, 48, 24) (192, 144, 72)
4 encoder (192, 48, 24) (192, 144, 72)
4 encoder (192, 48, 24) (192, 144, 72)

3 decoder (384, 48, 24) (384, 144, 72)
3 decoder (192, 48, 24) (192, 144, 72)
3 decoder (192, 48, 24) (192, 144, 72)

2 decoder (320, 96, 48) (320, 32, 16)
2 decoder (128, 96, 48) (128, 32, 16)
2 decoder (128, 96, 48) (128, 32, 16)

1 decoder (256, 96, 48) (256, 32, 16)
1 decoder (128, 96, 48) (128, 32, 16)
1 decoder (128, 96, 48) (128, 32, 16)

1 final (64, 32)
1 final (32, C)

ScanNet # parameters: 761,333
Matterport3D # parameters: 761,366

(a) ScanNet/Matterport architecture. We use more filters in the
later two mesh levels and the best performing filter ratio from Ta-
ble 1. We obtain different numbers of parameters for ScanNet and
Matterport3D since they differ in their number of semantic classes
(Cscannet = 21 and Cmatterport = 22).

#level level type module type filters

1 encoder edge+BN+ReLU 2 ∗ (9, 64, 32)
1 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
1 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)

2 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
2 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
2 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)

3 encoder edge+BN+ReLU 2 ∗ (128, 96, 48)
3 encoder edge+BN+ReLU 2 ∗ (192, 96, 48)
3 encoder edge+BN+ReLU 2 ∗ (192, 96, 48)

4 encoder edge+BN+ReLU 2 ∗ (192, 96, 48)
4 encoder edge+BN+ReLU 2 ∗ (192, 96, 48)
4 encoder edge+BN+ReLU 2 ∗ (192, 96, 48)

3 decoder edge+BN+ReLU 2 ∗ (384, 96, 48)
3 decoder edge+BN+ReLU 2 ∗ (192, 96, 48)
3 decoder edge+BN+ReLU 2 ∗ (192, 96, 48)

2 decoder edge+BN+ReLU 2 ∗ (320, 64, 32)
2 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)
2 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)

1 decoder edge+BN+ReLU 2 ∗ (256, 64, 32)
1 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)
1 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)

1 final Lin+BN+ReLU (64, 32)
1 final Lin (32, 13)

# parameters: 728,045

(b) S3DIS architecture. Unlike the ablation study, we use more
filters in the final two mesh levels.

Table 6: Architectures for benchmarks. We present two slightly different architectures for S3DIS and ScanNet/Matterport,
respectively. This is due to the comparably lower mesh quality of S3DIS.
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Method mIoU mAcc ceil. floor wall beam col. wind. door chair table book. sofa board clut.

Pointnet [10] 41.1 49.0 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
SegCloud [12] 48.9 57.4 90.1 96.1 69.9 0.0 18.4 38.4 23.1 75.9 70.4 58.4 40.9 13.0 41.6

Eff 3D Conv [16] 51.8 68.3 79.8 93.9 69.0 0.2 28.3 38.5 48.3 71.1 73.6 48.7 59.2 29.3 33.1
RSNet [5] 51.9 59.4 93.3 98.4 79.2 0.0 15.8 45.4 50.1 65.5 67.9 22.5 52.5 41.0 43.6

TangentConv [11] 52.6 62.2 90.5 97.7 74.0 0.0 20.7 39.0 31.3 69.4 77.5 38.5 57.3 48.8 39.8
PointCNN [8] 57.3 63.9 92.3 98.2 79.4 0.0 17.6 22.8 62.1 80.6 74.4 66.7 31.7 62.1 56.7

RNN Fusion [15] 57.3 63.9 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
ParamConv [14] 58.3 67.1 92.3 96.2 75.9 0.3 6.0 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2

MinkowskiNet [3] 65.4 71.7 91.8 98.7 86.2 0.0 34.1 48.9 62.4 89.8 81.6 74.9 47.2 74.4 58.6
KPConv [13] 67.1 72.8 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9

SPGraph [9] 58.0 66.5 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
SPH3D-GCN* [7] 59.5 65.9 93.3 97.1 81.1 0.0 33.2 45.8 43.8 79.7 86.9 33.2 71.5 54.1 53.7

HPEIN [6] 61.9 68.3 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4
DCM Net (Ours) 64.0 71.2 92.1 96.8 78.6 0.0 21.6 61.7 54.6 78.9 88.7 68.1 72.3 66.5 52.4

Table 7: Semantic segmentation IoU scores on S3DIS Area 5. We furthermore provide mean class accuracy scores.
Among all approaches, we perform third best only outperformed by KPConv [13] and MinkowskiNet [3]. Among graph
convolutional approaches, we clearly report state-of-the-art with a gap of 2.1% to HPEIN [6].

Method mIoU mAcc ceil. floor wall beam col. wind. door chair table book. sofa board clut.

Pointnet [10] 47.6 66.2 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
RSNet [5] 56.5 66.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 60.1 59.7 50.2 16.4 44.9 52.0

PointCNN [8] 65.4 75.6 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
KPConv [13] 70.6 79.1 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3

SPGraph [9] 62.1 73.0 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
HPEIN [6] 67.8 76.3 - - - - - - - - - - - - -

SPH3D-GCN* [7] 68.9 77.9 93.3 96.2 81.9 58.6 55.9 55.9 71.7 72.1 82.4 48.5 64.5 54.8 60.4
DCM Net (Ours) 69.7 80.7 93.7 96.6 81.2 44.6 44.9 73.0 73.8 71.4 74.3 63.3 63.9 63.0 61.9

Table 8: Semantic segmentation IoU scores on S3DIS k-fold. We furthermore provide mean class accuracy scores. Among
all approaches, we perform second best only outperformed by KPConv [13]. Among graph convolutional approaches, we
report state-of-the-art with a gap of 0.8% to the concurrent work SPH3D-GCN [7].

[8] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan
Di, and Baoquan Chen. PointCNN: Convolution On X-
Transformed Points. In Neural Information Processing Sys-
tems (NIPS), 2018. 5

[9] Landrieu Loic and Martin Simonovsky. Large-scale Point
Cloud Semantic Segmentation with Superpoint Graphs. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2018. 5

[10] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 5

[11] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-
Yi Zhou. Tangent Convolutions for Dense Prediction in 3D.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2018. 5

[12] Lyne P. Tchapmi, Christopher B. Choy, Iro Armeni, JunY-
oung Gwak, and Silvio Savarese. Segcloud: Semantic seg-

mentation of 3d point clouds. In International Conference
on 3D Vision (3DV), 2017. 5

[13] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J.
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), 2019. 1, 5

[14] S. Wang, S. Suo, W.C. Ma, A. Pokrovsky, and R. Urta-
sun. Deep Parametric Continuous Convolutional Neural Net-
works. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 5

[15] Xiaoqing Ye, Jiamao Li, Hexiao Huang, Liang Du, and Xi-
aolin Zhang. 3D Recurrent Neural Networks with Context
Fusion for Point Cloud Semantic Segmentation. In IEEE
European Conference on Computer Vision (ECCV), 2018. 5

[16] Chris Zhang, Wenjie Luo, and Raquel Urtasun. Efficient con-
volutions for real-time semantic segmentation of 3d point
clouds. In International Conference on 3D Vision (3DV),
2018. 5



Input Point Cloud Ground Truth Prediction Error

l ceiling l floor l wall l beam l column l window l door l chair l table l bookshelf l sofa l board l clutter

Figure 3: Results on Stanford Large-Scale 3D Indoor Spaces [1]. Our method correctly predicts challenging classes such as l board,
while maintaining clear boundaries for most of the classes. In the second row, our method confuses the similar classes l column and
l wall. In the last example, it becomes evident that our method tends to produce unclear boundaries for diverse l clutter regions.

Input Mesh Ground Truth Prediction Error

l unlabeled l wall l floor l cabinet l chair l sofa l table l door l window l picture l counter l desk l fridge l toilet l sink
l bathtub l otherfurn l ceiling

Figure 4: Results on Matterport3D [2]. Our method correctly predicts even l unlabeled regions. However, reasonable errors occur, such
as confusing l windows extending down to the floor as l doors. In the last row, our algorithm correctly predicts l sofa even though the
ground truth is falsely labeled as l chair.



ScanNet [8] Test mIoU Data Representation FeaturesPoints Voxel Mesh 2D Texture

PointNet [39] - X - - - - XYZ-RGB
PointNet++ [40] 33.9 X - - - - XYZ

FCPN [11] 44.7 X X - - - XYZ-RGB-N
3DMV [9] 48.3 X X - X - XYZ-RGB-N
JPBNet [6] 63.4 X - - X - XYZ-RGB-N

MVPNet [26] 64.1 X - - X - XYZ-RGB-N
Tangent Conv [48] 43.8 X - - - - XYZ-RGB-N

SurfaceConvPF [20] 44.2 - - X - - XYZ-RGB-N
TextureNet [25] 56.6 - - X X X XYZ-RGB-N
PointCNN [33] 45.8 X - - - - XYZ-RGB-N

ParamConv [52] - X - - - - XYZ-RGB
MCCN [22] 63.3 X - - - - XYZ-RGB-N

PointConv [56] 66.6 X - - - - XYZ-RGB-N
KPConv [50] 68.4 X - - - - XYZ-RGB

SparseConvNet [17] 72.5 - X - - - XYZ-RGB
MinkowskiNet [7] 73.4 - X - - - XYZ-RGB

DeepGCN [31] - X - - - - XYZ-RGB-N
SPGraph [34] - X - - - - XYZ-RGB

SPH3D-GCN [30] 61.0 X - - - - XYZ-RGB-N
HPEIN [27] 61.8 X - - - - XYZ-RGB-N

DCM Net (Ours) 65.8 X - X - - XYZ-RGB-N

Table 9: Data representations and input features. We show the data representation and input features of each approach.


