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1. Description of supplementary video
One single supplementary video is provided, which is a

stitched slide presentation. The slides are numbered as #1
to #4 and are described below.
#1 presents the steps of physics based simulation of mi-
croscopy videos of vesicles and their motion patterns. This
illustrates the steps shown in Fig. 3 of the main manuscript.
#2 presents a sample of an experimental live-cell sequence,
a sample ROI extracted from the live-cell sequence, and the
nanoscopy image of the ROI reconstructed using MUSI-
CAL.
#3: presents a comparison of the feature representations of
vesicle motion. The raw image sequence for a vesicle in a
live-cell video, the corresponding micro-motion magnified
sequence, and the nanoscopy image reconstructed by MU-
SICAL illustrate that the nanoscopy image provides better
feature of identifying the motion pattern.
#4: presents the example shown in Fig. 12 of the main
manuscript. The original video of a vesicle moving and
interacting with a mitochondrion is shown along with the
nanoscopy image obtained by stitching the MUSICAL re-
sults of the different sub ROIs.

2. SRAN architecture
The architecture of SRAN is described in Table 1. We

use two types of activation function for mixed attention and
spatial attention. We have not used three channel attention
as reported in [10] because nanoscopy images are single
channel. The mixed attention (f1) is a simple sigmoid over
all spatial position. The spatial attention (f2) is normalized
over each channel and then a sigmoid to get the soft mask,
where µ is the mean and σ is the standard deviation.

f1(xi, c) =
1

1 + exp(−xi,c)
(1)

f2(xi, c) =
1

1 + exp(−(xi,c − µc)/σc)
(2)

Table 1. Shallow Residual Attention Network (SRAN) architec-
ture details for nanoscale motion classification. The attention
module is built by pre-activation residual units [5] with a number
of channel in each stage same as ResNet [4].

Layer Output Size Shallow Attention
Input (64× 64) - -

Conv1 32× 32 5× 5, 32, stride 2
Max pooling 16× 16 2× 2, stride 2

Residual Unit 16× 16

 1× 1, 32

2× 2, 32

1× 1, 128


Attention Module 16× 16 Attention ×1

Residual Unit 8× 8

 1× 1, 64

1× 1, 64

1× 1, 256


Attention Module 8× 8 Attention ×1
Average pooling 1× 1 8× 8, stride 1

FC,Softmax 1000, 5 -

3. Baseline hyperparameters for classification
methods

Here we present the hyperparameters used for baseline
classification. These parameters apply to all the baseline
methods used in the paper. We have used standard data aug-
mentation, which include shift, flip, rotation, and brightness
changes. We have taken a batch size 32 and adopted early
stopping if validation accuracy does not improve for 100 it-
erations. The learning rate is decreased by a factor of 10
when the validation accuracy stops improving for 20 itera-
tions. The network architecture is adjusted only to fit the
input images, and the number of hidden layers and other
internal parameters remain the same as the original imple-
mentations. Parameters other than the network architecture
is presented in Table 2.
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Table 2. Hyperparameters of different baseline classification models
Method Hyperparameters
Deep CNN [6] Dropout 0.5 in first two fully connected layers. Learning rate 0.01. Weight decay 0.0005. Momentum 0.9. ReLU

activation.
VGG16 [13] Dropout: 0.5 in first two fully connected layers. Learning rate 0.01. Weight decay 0.0005 (L2). Momentum 0.9.

ReLU activation.
Attention
Model [12]

Dropout: 0.5. Stochastic gradient descent (SGD). Learning rate 0.01. Weight decay 0.0005. Momentum 0.9.
Hypertangent activation.

Shallow Net-
work [7]

Number of hidden units (M)=40000. Filter size (W)=7. Pooling size (Q)=7. Downsample factor (D)=2. Learning
rate 0.01.

ResNet50 [4] Dropout 0.5. SGD. Learning rate 0.01. Weight decay 0.0005. Momentum 0.9.
ResNet20 [4] SGD. Learning rate 0.01. Weight decay 0.0005. Momentum 0.9.
MLP (Baysian
Optimization) [9]

Final MLP contains 3 layers. Each layers has 512 hidden unit. Dropout 0.5 for first two layers. ReLU activation.

Inception V3 [11] Learning rate 0.01. Weight decay 0.0005. Momentum 0.9.
Deep residual
attention [10]

Dropout 0.6. SGD. Learning rate 0.00078. Weight decay 0.0001. Momentum 0.9.

Proposed SRAN Dropout 0.6. SGD. Learning rate to 0.00047. Weight decay 0.0001. Momentum 0.9.

Figure 1. Baysian optimization in deep residual network (a) distribution of learning rate over iteration (b) distribution of dropout over
iteration (c) learning rate, dropout and accuracy, red star represents maximum accuracy.

Figure 2. Baysian optimization in proposed shallow residual network (a) distribution of learning rate over iteration (b) distribution of
dropout over iteration (c) learning rate, dropout and accuracy, red star represents maximum accuracy.

4. Hyperparameter optimization experiment
for DRAN and SRAN

We used Bayesian optimization to fine tune the minimum
learning rate and dropout before the dense layer for DRAN
and SRAN. The minimum learning rate is in the range [1e−
7, 1e − 2], and the dropout is in the rang of [0.1, 0.8]. We
have used 300 iterations for optimization in the simulated

data with 70% training and 30% validation setup. Figure 1
shows the evolution of the learning rate and dropout with
the iterations and the accuracy as a function of learning rate
and dropout for DRAN. Figure 2 present analogous plots
for SRAN. It is observed that DRAN performs best with an
accuracy of 0.85 with the initial learning rate 0.00078 and
dropout 0.6. The shallow network produces 0.89 accuracy
with 0.00047 initial learning rate and 0.5 dropout. We also



Table 3. Values of mean and standard deviation (in bracket) of the motion states observed in our live cell dataset. Rows are initial states
and columns are subsequent states. Colors match the colors of the box plots in Fig. 11 (a) of the main paper.

CirC RCir Flow Ranw Stat
Normal 0.181 (0.039) 0.068 (0.006) 0.063 (0.033) 0.603 (0.086) 0.083 (0.012)
Hypoxia 0.162 (0.017) 0.060 (0.024) 0.045 (0.017) 0.679 (0.021) 0.052 (0.009)
HypoxiaADM 0.110 (0.043) 0.049 (0.009) 0.030 (0.028) 0.739 (0.021) 0.070 (0.015)

Table 4. Values of mean and standard deviation (in bracket) of consecutive-motion-state-pairs observed in our live cell dataset. Rows are
initial states and columns are subsequent states. Colors match the colors of the box plots in Fig. 11 (b) of the main paper.

Subsequent StateInitial
State CirC RCir Flow RanW Stat
CirC 0.092 (0.017) 0.019 (0.007) 0.007 (0.005) 0.071 (0.007) 0.009 (0.006)
RCir 0.016 (0.008) 0.018 (0.005) 0.003 (0.001) 0.037 (0.010) 0.003 (0.003)
Flow 0.010 (0.010) 0.003 (0.001) 0.011 (0.008) 0.034 (0.020) 0.004 (0.005)

RanW 0.070 (0.011) 0.034 (0.009) 0.026 (0.017) 0.409 (0.120) 0.037 (0.007)
Normal

Stat 0.008 (0.002) 0.005 (0.001) 0.004 (0.003) 0.034 (0.007) 0.024 (0.004)
CirC 0.076 (0.011) 0.020 (0.008) 0.003 (0.002) 0.083 (0.009) 0.004 (0.002)
RCir 0.018 (0.013) 0.017 (0.013) 0.001 (0.001) 0.033 (0.004) 0.002 (0.001)
Flow 0.003 (0.003) 0.001 (0.001) 0.008 (0.007) 0.031 (0.007) 0.001 (0.002)

RanW 0.075 (0.003) 0.030 (0.008) 0.023 (0.009) 0.480 (0.019) 0.027 (0.015)
Hypoxia

Stat 0.005 (0.002) 0.001 (0.001) 0.001 (0.001) 0.030 (0.004) 0.015 (0.002)
CirC 0.048 (0.023) 0.009 (0.004) 0.001 (0.001) 0.060 (0.027) 0.007 (0.002)
RCir 0.008 (0.004) 0.014 (0.007) 0.001 (0.002) 0.031 (0.002) 0.004 (0.003)
Flow 0.000 (0.000) 0.002 (0.002) 0.006 (0.000) 0.018 (0.014) 0.002 (0.002)

RanW 0.054 (0.016) 0.025 (0.003) 0.021 (0.018) 0.579 (0.041) 0.036 (0.009)
HypoxiaADM

Stat 0.002 (0.002) 0.004 (0.001) 0.001 (0.002) 0.042 (0.009) 0.016 (0.005)

note that the methods are not too sensitive to the learning
rate and dropout as the standard deviation of accuracy is
3.62, 2.38 for DRAN and SRAN, respectively.

5. Detailed statistics of state changes
The statistics of the frequency of occurrences of motion

states and consecutive-motion-state-pairs were presented
graphically in the Fig. 11 of the main manuscript through
box plots. Here, we present the values of the mean and
standard deviation of each box plot. The statistics for the
motion states are presented in Table 3. The statistics for the
consecutive-motion-state-pairs are presented in Table 4.

6. Live cell data collection
6.1. Sample preparation

The abbreviations used in this subsection are related to
chemical names of associated chemicals used as they are
in current scientific literature. Therefore, their complete
forms are not included. The rat cardiomyoblast cell-line
H9c2 (cells derived from embryonic heart tissue; Sigma
Aldrich) was cultured in DMEM with 10% fetal bovine
serum. The cells were transiently transfected using Tran-
sIT –LT1 (Mirus) to express the mitochondrial fluorescence
marker mCherry-OMP25-TM. After 24 hours of transfec-
tion, the cells were incubated in serum free DMEM medium
for 4 hours and then the medium was changed to DMEM
with 2% serum just before treatment for one hour (see be-
low). After treatment, the medium was changed to DMEM

10% FBS. The cells were divided into 3 pools, namely nor-
mal, hypoxia, and hypoxiaADM, discussed in the main pa-
per. Here, we include more details about the treatment of
the cells in these pools.

Normal conditions (control): These cells were kept un-
der normal cell-culture conditions at 37◦C with about 21%
oxygen and 5% CO2.

Hypoxia: These cells were subjected to hypoxia (defi-
ciency of oxygen; 0.3% O2 level) by incubation in a hy-
poxic cell incubator for 60 minutes.

Hypoxia and ADM: These cells were subjected to hy-
poxia like the cells above, but were simultaneously treated
with the peptide hormone Adrenomedullin (ADM) at 10−6

M concentration. This hormone is found to exhibit protec-
tive functions under various pathological conditions like is-
chemia in heart cells during myocardial infarction.

The cells were labelled using the live-cell friendly flu-
orescent marker mCLING-ATTO647N right before imag-
ing using a concentration of 1:2000 with a 12 min incuba-
tion time. After incubation, the medium was replaced with
cell-culture medium (DMEM 10% FBS) for time-lapse mi-
croscopy at 37◦C, atmospheric oxygen (i.e., the cells in hy-
poxia and hypoxia ADM pools are no longer in oxygen-
deficient condition) and 5% CO2. The membrane marker
was quickly internalized by the cells, and labeled small
membrane-bound vesicles in the cells. This membrane
marker exhibits fluorescence emission maximum at 662 nm
wavelength. The mitochondrial marker was imaged sequen-
tially in a separate color channel (emission maximum at 610



nm) and used as a reference for cellular morphology. It was
not a subject of computational analysis in this work.

6.2. Microscopy and imaging

GE DeltaVision Elite microscope was used for imag-
ing the cells. The numerical aperture of the microscope is
1.42. For the membrane marker, marking the vesicles, the
emission wavelength is 662 nm. Corresponding color fil-
ter was used in the collection path to image vesicles so that
the light from mitochondria does not create cross-spectral
noise while imaging vesicles. The digital resolution of the
microscope, given by the camera pixel size divided by the
magnification, is 80 nm. The exposure time for imaging the
vesicles was 10 ms. The acquisition rate was 50 frames per
second. Although the mitochondria are also labelled and
imaged, they are not used in the analysis since they are not
vesicle like structures.

7. Details of physics based simulation
Distribution of fluorescent molecules: Thousand emit-

ters are distributed on the surface of the vesicle. Their x and
y coordinates are selected using uniform distribution within
the surface of the vesicle.

Photokinetics: Statistical constants used for photoki-
netic simulations are the same for all the molecules. A
molecule may bleach (thereby become unavailable for fluo-
rescence) with a probability 0.1. If it has not bleached, in-
termittent emission of fluorescence with blinking time con-
stant of 1 milliseconds and the probability of the molecule
fluorescing is 0.3. The number of emitted photons is se-
lected from Poisson distribution with mean 100000 photons
per second. These photokinetic properties and simulations
have been taken from [1] and references therein.

Motion simulation: All the motion parameters that are
selected randomly for any motion state assume uniform
distribution in the range of the parameter. In the case of
RCir, we first compute a random speed in the range [0, 500]
nm/frame assuming uniform distribution. Next, we com-
pute a direction of update assuming uniform distribution.
Using the speed and direction, new coordinates for the cen-
ter of vesicle are computed and it is checked if the new coor-
dinates are inside the circle of random motion or not. If not,
the new coordinates are dropped and the process is repeated
till the new coordinates are within the circle of random mo-
tion. In the case of Rand, such check is not performed and
the new coordinates computed the first time are accepted.

Point spread function (PSF) of the microscope: The
PSF of the microscope is given by an Airy function [8] as:

I(xp, yp) = γ
(J1(2πr

2πr

)2
(3)

where γ is a constant related to numerical aperture (NA) of
the microscope objective, magnification (M) of the micro-

Figure 3. Illustration of the effect of digital and optical resolution
of the microscope is shown through 2 fluorescent molecules, sepa-
rated by different distances in (a-c). The ’+‘ marker shows the lo-
cation of emitter. The parameters used for simulation correspond
to the microscope used by us. Scale bar : 500 nm.

scope, refractive indices of the sample and the microscope
objective media, and the emission wavelength λ. J1(•) is
Bessel function of the first kind and the first order. Further
r = NAr̂

λ , where r̂ =
√
(xp − xs)2 + (yp − ys)2, (xs, ys)

are the coordinates of a fluorescent molecule in the sam-
ple space (in true physical coordinates) and (xp, yp) are the
effective pixel coordinates, i.e. coordinates of the pixel ad-
justed to match the sample size (actual physical coordinates
in the camera space divided by M). The PSF is used there-
fore to compute an image per fluorescent molecule. The im-
ages of all the fluorescent molecules are summed up to form
one microscopy image of the fluorescent molecule distribu-
tion of the sample.

In order to provide an insight into the optical resolu-
tion and digital resolution of the microscope, we present
an example in Fig. 3. The digital resolution of the micro-
scope is defined by the effective pixel size (80 nm in our
case) and the optical resolution limit is given by Abbe as
∼ 0.61λ/NA [8] (280 nm in our case).

Emulating motion through multiple time instances
per frame and forming image frames: Motion occurs
in continuous time coordinates while camera integrates all
the temporal occurrences in the duration of one frame into
a single image. We therefore simulate 10 time instances per



frame towards emulating the motion continuity. An exam-
ple is presented in Fig. 4. Therefore, for simulating the raw
video comprising to 200 frames for one vesicle, we form the
coordinate list of all the fluorescent molecules on the vesi-
cle for 2000 time points. Then, we compute the microscopy
images for all 2000 time points. We perform temporal sum-
mation of the first 10 images to form the first frame, the next
10 images to form the second frame, and so on.

Emulating noise in the image: In microscopy images,
there are two main sources of noise: (a) camera’s dark cur-
rent noise, also called electronic noise, which contributes a
noisy background in the image, and (b) photon noise, which
is based on Poisson statistics of arrival of photon at the ex-
pected location. To emulate these noise characteristics and
match the signal to noise ratio observed in practical mi-
croscopy images, we perform the following operations. Let
us say that the simulated microscopy image, scaled to span
[0, 1] is I. Moreover, let the signal to noise ratio be SNR and
the measured background values in the camera with closed
shutter be b. We simulate an image Î as:

Î = b(SNR− 1)I+ b (4)

Then, the final image with noise Ĩ is such that each pixel in
Ĩ is generated using a Poisson distribution with mean equal
to the corresponding pixel in Î.

With ∼ms exposure time such as used in our experi-
ments, the dark current noise is significantly stronger than
the photon noise. In such situation, signal to background
ratio (SBR) is a practical measure of noise. The SBR of our
live-cell images are in the range [2, 4]. We emulate the same
by randomly choosing SBR in this range ans substituting it
for SNR in eq. 4. Further, we measure the mean intensity
in an image acquired by shutting the aperture of the cam-
era (i.e. in the condition when no light enters the camera).
We use this value as b, which is in the range [50, 80] for our
microscope.

Note on 3D aspects of motion, sample, and micro-
scope: We note that our simulations assume a 2D geom-
etry of sample and motion as well as that the sample plane
is in focus of the microscope. For a furthermore realistic
physics-based modeling, we have to emulate

• 3D geometry and motion of vesicle, including their po-
tential movement into our-of-focus region as well as
region outside the depth of field of the microscope.

• 3D point spread function of the microscope such as
using Gibson Lanni model [3].

8. Particle tracking challenge dataset [2] and
difference from our dataset

A simulated particle dataset (PTC) is proposed in [2].
We note that PTC is quite distant from the physics of our

Figure 4. Multiple time instances are simulated within the duration
of a single frame in order to emulate the realistic motion blur in-
troduced by the microscope due to the motion of the vesicle. Scale
bar: 500 nm.

Figure 5. Our dataset often has sub-pixel displacement between
two frames, while PTC has displacement of few pixels.

Figure 6. Our dataset preserves sub-frame motion while PTC sim-
ulates only frame to frame displacement.

problem. A) Particles in PTC displace by a few pixels be-
tween two consecutive frames. In our case, a vesicle may
displace by sub-pixel distance between the two frames, see
Fig. 5. B) PTC simulates motion as frame-to-frame dis-
placement (1 position/frame). We simulate motion at sub-
frame temporal scales (10 positions/frame), which is more
physically accurate, see Fig. 6. However, it introduces mo-
tion blur in each frame, which does not help conventional
tracking. C) Our images have small exposure time of few
milliseconds. At this rate, each fluorescent molecule can-
not be modeled as having a constant fluorescent intensity.
Therefore, we need to include the photo-kinetics of fluo-
rescence, which results in intensity fluctuations over time
irrespective of motion. This effect is not simulated in PTC,
which simplifies tracking.



9. More visual results of motion classification
A few randomly selected examples of simulated motion

patterns are presented in Fig. 7 and a few random samples
taken from experimental data that are correctly classified is
presented in Fig. 8.
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Sbalzarini, Y. Gong, J. Cardinale, C. Carthel, S. Coraluppi,
M. Winter, et al. Objective comparison of particle tracking
methods. Nature methods, 11(3):281, 2014. 5

[3] S. F. Gibson and F. Lanni. Diffraction by a circular aperture
as a model for three-dimensional optical microscopy. Jour-
nal of the Optical Society of America A, 6(9):1357–1367,
1989. 5

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016. 1, 2

[5] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. In European Conference on Com-
puter Vision, pages 630–645. Springer, 2016. 1

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems, pages
1097–1105, 2012. 2

[7] M. D. McDonnell and T. Vladusich. Enhanced image clas-
sification with a fast-learning shallow convolutional neural
network. In IEEE International Joint Conference on Neural
Networks, pages 1–7, 2015. 2

[8] L. Novotny and B. Hecht. Principles of Nano-optics. Cam-
bridge university press, 2012. 4

[9] B. Shahriari, A. Bouchard-Côté, and N. Freitas. Unbounded
bayesian optimization via regularization. In Artificial Intel-
ligence and Statistics, pages 1168–1176, 2016. 2

[10] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang,
X. Wang, and X. Tang. Residual attention network for image
classification. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 3156–3164, 2017. 1, 2

[11] X. Xia, C. Xu, and B. Nan. Inception-v3 for flower classi-
fication. In International Conference on Image, Vision and
Computing, pages 783–787, 2017. 2

[12] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang.
The application of two-level attention models in deep convo-
lutional neural network for fine-grained image classification.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 842–850, 2015. 2

[13] X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very
deep convolutional networks for classification and detection.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 38(10):1943–1955, 2015. 2

Figure 7. Few randomly selected examples of simulated motion
patterns. Scale bar: 500 nm.

Figure 8. Few randomly selected examples of the correctly classi-
fied motion patterns. Scale bar: 500 nm.


