
Background Matting: The World is Your Green Screen
*Supplementary Material*

Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman

University of Washington

1. Overview
We provide additional details and results in this supple-

mentary material. In Sec. 2 we describe the details of our
network architecture. In Sec. 3.1 we clarify our choice of
automatic trimap generation, especially to show why back-
ground subtraction is not good enough for this problem. In
Sec. 3.2, we show why algorithms that do not predict fore-
ground F introduce additional artifacts in compositing. In
Sec. 4, we provide additional qualitative examples for ab-
lation studies. Specifically, we show the role of Content
Switching Block in Sec. 4.1, motion cue in Sec. 4.2, self-
supervised adversarial training on real data in Sec. 4.3 and
robustness w.r.t. segmentation and background in Sec. 4.4.

Please see Supplementary Video for results.

2. Network Architectures
Our proposed matting network GAdobe, shown again for

reference in Figure 1 (same as Figure 2 in the main paper)
consists of the Context Switching Block (CS Block) fol-
lowed by residual blocks (ResBLKs) and decoders to pre-
dict alpha matte α and foreground layer F . Below we de-
scribe the network architecture in details. Most of our Gen-
erator architecture, especially residual blocks and decoders,
and Discriminator architecture are based on that of [4].
Generator GAdobe

‘Image Encoder’ and ‘Prior Encoder’ (CS Block):
C64(k7) - C*128(k3) - C*256(k3)
‘CN(kS)’ denotes convolution layers with N S × S filters
with stride 1, followed by Batch Normalization and ReLU.
‘C*N(kS)’ denotes convolution layers with N S × S filters
with stride 2, followed by Batch Normalization and ReLU.
The output of ‘Image Encoder’ layer produces a blob of
spatial resolution 256 × 128 × 128. All convolution layers
do not have any bias term.
‘Selector’ (CS Block): C64(k1)
‘CN(kS)’ denotes convolution layers with N S × S filters
with stride 1, followed by Batch Normalization and ReLU.
The ‘Selector’ block takes as input the concatenation

of image feature and a prior feature as a blob of spatial
resolution 512 × 128 × 128. The output of the ‘Selector’
network is a blob of spatial resolution 64× 128× 128. The
goal of the ‘Selector’ block is to generate prior features
conditioned on the image. This will help the network to
generalize from synthetic-composite dataset (on which it
was trained) to real images by not over-relying on one kind
of features (e.g. color difference with background).
‘Combinator’ (CS Block): C256(k1)
‘CN(kS)’ denotes convolution layers with N S × S filters
with stride 1, followed by Batch Normalization and ReLU.
The ‘Combinator’ block takes as input the concatenation of
image features of spatial resolution 256× 128× 128, along
with 3 other prior features from the ‘Selector’ network of
spatial resolution 64×128×128 each. Thus the input to the
‘Combinator’ block is of spatial resolution 448×128×128
and the output is of spatial resolution 256 × 128 × 128.
The ‘Combinator’ block learns to combine the individual
priors features with the original image feature for the goal
of improving matting.

‘ResBLKs’: K ResBLK
The output of the combinator is first passed through
K = 7 ‘ResBLK’s and then provided as input to 2 separate
‘ResBLK’s of K = 3 for alpha matte and foreground layer
separately. All ‘ResBLK’s operate at a spatial resolution of
256× 128× 128. Each ‘ResBLK’ consists of Conv256(k3)
- BN -ReLU - Conv256(k3) - BN, where ‘BN’ denote
Batch Normalization.

‘Decoder’ for alpha matte α: CU*128(k3)-CU*64(k3)-
Co1(k7)-Tanh
The input to the ‘Decoder’ is of resolution
256 × 128 × 128.‘CU*N(kS)’ denotes bilinear up-
sampling by factor of 2, followed by convolution layer with
N S × S filters with stride 1, Batch Normalization and
ReLU. The last layer Co3k(7) consists of only convolution
layers of 1 7× 7 filters, followed by Tanh layer. This scales
the output alpha between (−1, 1).

1



Figure 1. Overview of our approach. Given an input image I and background image B′, we jointly estimate the alpha matte α and the
foreground F using soft segmentation S and motion prior M (for video only). We propose a Context Switching Block that efficiently
combines all different cues. We also introduce self-supervised training on unlabelled real data by compositing into novel backgrounds.

‘Decoder’ for foreground F : CU*128(k3)-CU*64(k3)-
Co1(k7)
The input to the ‘Decoder’ is of resolution
256 × 128 × 128.‘CU*N(kS)’ denotes bilinear up-
sampling by factor of 2, followed by convolution layer
with N S × S filters with stride 1, Batch Normalization
and ReLU. There is also a skip connection from the image
input features of resolution 128 × 256 × 256 which is
combined with the output of CU*128(k3) and passed on
to CU*64(k3). The last layer Co3k(7) consists of only
convolution layers of 1 7× 7 filters.

Discriminator D: C*64(k4) - C*I128(k4) - C*I256(k4) -
C*I512(k4)
We use 70 × 70 PatchGAN [2]. ‘C*N(kS)’ denotes convo-
lution layers with N S × S filters with stride 2, followed
by leaky ReLUs of slope 0.2. ‘I’ denotes the presense of
Instance Norm before leaky ReLU, in all layers except the
first one. After the last layer a convolution filter of kernel
4 × 4 is applied to produce a 1 dimensional output. The
PatchGAN is applied over the whole composite image by
convolving with every 70 × 70 patch to determine if it is
real or fake.

3. Experimental Evaluation
3.1. Automatic Trimap Generation

We compare our method with algorithms that require
user defined trimaps (CAM, IM, BM). It is extremely time
consuming to annotate trimaps for every frame of a video,
or even for a bunch of keyframes whose trimaps then need
to be propagated to the remaining frames and then touched

up. As described in the paper, we instead created trimaps
automatically by applying segmentation [1], and labelling
each pixel with person-class probability > 0.95 as fore-
ground, < 0.05 as background, and the rest as unknown.
We tried, and rejected, alternative methods, including back-
ground subtraction and erosion-dilateion of the segmenta-
tion mask, which we now describe and illustrate here for
completeness.

Background subtraction is popularly used for change de-
tection, but is extremely sensitive to color differences and
produces only a binary matte. Thus it is not in itself a
suitable candidate for matting. However background sub-
traction could in principle be used to generate a trimap. In
our experiments, we observed that the best thresholds var-
ied from image to image and even then produced mediocre
results (see hand-tuned example in Figure 3). We also tried
erosion-dilation of the segmentation mask (erode 5 steps,
dilate 15 steps) to try to produce a fixed width ‘unknown’
band but we often ended up with mattes that pulled in the
background as a part of the foreground. Figure 3 shows ex-
amples of trimaps and resulting alpha mattes using erosion-
dilation, hand-tuned thresholding of background subtrac-
tion, and our probability-thresholded ‘Automatic Trimap’
method.

3.2. Predicting Foreground layer F

To produce composites – the primary reason for extract-
ing a matte in the first place – we require both α and F .
Since IM and LFM do not estimate F , we are still left with
the task of estimating it ourselves. Why is this non-trivial?
From the matting equation (I = αF +(1−α)B) after esti-
mating only α, we can say that observed pixel color I must
be α of the way along a line segment from B to F . Clearly,

2



Figure 2. Choice of Foreground layer. For baseline algorithms, IM and LFM, that do not predict the foreground layer F , we observe that
F = I produces less visible artifacts compared to predicting F from the matting equation using the captured background B′. Notice how
some of the brick texture creeps into the foreground when solving for F with the matting equation. We also show that our approach, which
jointly estimates F and α, produces less artifacts in compositing.

Figure 3. Automatic Trimap generation. Our choice of auto-
matic trimap generation from the probability estimates of the seg-
mentation network performs better than background subtraction or
erosion-dilation of the segmentation mask.

there is an infinite family of B’s and F ’s that satisfy this
constraint; thus, given just I and α, we cannot readily infer

F . Our seemingly naive solution is to set F = I for these
methods. We also tried estimating F directly from the mat-
ting equation given B′ – i.e., F = (I− (1−α)B′)/α when
α 6= 0, with F clamped so that each color channel is in
[0, 1] – but the results were worse than F = I , largely due
to discrepancies betweenB′ andB, particularly in the hand-
held camera case, where small misalignments can arise. We
show a comparison of these two options for IM matting,
plus a comparison to our result, in Figure 2. The figure
shows that matting-equation based estimation of F pulls
some of the background texture into the matte. The F = I
solution is better, but picks up some of the background col-
ors (a bit of green and yellow in this case), since it is just
copying foreground-background mixed pixels and blending
them over another background. Our method, which esti-
mates F directly, shows fewer artifacts. Our matte is a bit
softer, but it captures structure like the curls on the top of the

3



Figure 4. Role of CS Block. When foreground color coincides with the background color, Context Switching Block utilizes soft segmen-
tation to predict the correct matte. ‘No Context Switching’ produces holes when foreground color matches strongly with the background.

head; further, some of the apparent sharpness of the other
composites comes from copying over too much of the orig-
inal image rather (which has detail) rather than fully sepa-
rating F from the background.

3.3. Results on Real Data

After conducting the user study, we realized that we had
given a slight advantage to our method by retaining only
the largest α > 0 connected component for our background
matting approach but not for the competing approaches. We
noted that the CAM and IM methods had small “floaters”
after matting, so applied the connected component removal
to these videos and re-ran the study. We did not observe
that BM had floaters in our examples; any that appeared
to remain, were actually connected to the largest compo-
nent by “bridges” of small α. LFM was more problem-
atic. We found that LFM would at times pull in pieces of
the background that were larger than the foreground per-
son; the result of retaining the largest connected component
would then mean losing the foreground subject altogether,
an extremely objectionable artifact. Rather than continuing
to refine the post-process for LFM, we simply did not apply
a post-process for its results. As seen in the videos, LFM,
in any case, had quite a few other artifacts that made it not
competitive with the others.

Table 1 and 2 shows the result of the updated user study.

We observe that the results are similar to the ones reported
in the main paper (i.e., Tables 2 and 3 in the main paper);
the excess connected components for CAM and IM did not
have a significant impact relative to other errors in matte
estimation.

Ours vs. much better better similar worse much worse

BM 52.9% 41.4% 5.7% 0% 0%
CAM 40.8% 36.7% 19.2% 3.3% 0%

IM 25.8% 52.5% 18.4% 2.5% 0.8%
LFM 72.0% 20.0% 4.0% 3.0% 1%

Table 1. User study on 10 real world videos (fixed camera).

Ours vs. much better better similar worse much worse

BM 61.0% 31.0% 3.0% 4.0% 1.0%
CAM 45.0% 35.0% 5.0% 5.0% 10.0%

IM 34.2% 46.6% 6.7% 2.5% 10.0%
LFM 65.7% 27.1% 4.3% 0% 2.9%

Table 2. User study on 10 real world videos (handheld).

4. Ablation Study
In this section, we provide additional details and more

results for the ablation studies already presented in the main

4



paper. Specifically, we analyze (i) Role of Context Switch-
ing Block (ii) Role of motion cues and (iii) Compare ‘Ours-
Real’ to ‘Ours-Adobe’.

4.1. Role of Context Switching Block

Here we go in more depth on the paper’s CS block ab-
lation study, again showing that the CS Block network is
largely effective in utilizing all cues and in generalizing bet-
ter from the synthetic-composite Adobe dataset [3] to real
world images. To this end we train GAdobe with CS Block
on the Adobe dataset which we term as ‘Ours-Adobe’ (with
Context Switching). Additionally, we construct another net-
work Gconcat (No Context Switching), where we remove
the CS block. The input to this network is the concatena-
tion of the input image, background, soft segmentation, and
motion cues {I,B′, S,M} , which is passes through the
‘Image Encoder’ architecture to produce a 256× 128× 128
dimensional feature. Since there is no CS Block, we di-
rectly pass this feature to the ResBLKs and then continue
through the same architecture presented in Figure 1. We
also train this network on the Adobe dataset, following the
exact protocol of training ‘Ours-Adobe’.

We then test both GAdobe and Gconcat on our real video
dataset. Note that for this experiment we use the motion
cue M = {I−2T , I−T , I+T , I+2T } for both GAdobe and
Gconcat. We captured videos at 60fps and set T = 20
frames.

In Figure 4 of this document and in Figure 4 of the
main paper, we show multiple examples from different
videos where a part of the foreground person matches the
background color. Gconcat (‘No Context Switching’) fails
in these situations, this is because while training on the
synthetic-composite dataset it learns to focus too much on
the color differences to perform matting and fails when col-
ors coincide. On the other hand GAdobe (‘With Context
Switching’) handles color coincidences better by utilizing
the soft segmentation cues provided in the input. Thus the
CS Block learns to properly utilize the cues at hand, when
compared to ‘No Context Switching’, which focuses more
on the color differences to produce a matte. Note that, the
holes produced by ‘No Context Switching’ as shown in Fig-
ure 4 appears in multiple frames of that video where the
color coincides significantly; we show only 1 sample from
all of these frames.

4.2. Role of Motion Cues

Here we provide more detail and examples on the pa-
per’s ablation study for motion cues. When the input is
video, we have the option of setting the motion cue to
M = {I−2T , I−T , I+T , I+2T }, where T=20 for a 60fps
video. We train another network Gstill, by removing the
motion cue input and its related ‘Prior Encoder’ and ‘Selec-
tor’ from the architecture presented in Figure 1. Thus Gstill

Figure 5. Role of Motion Cues. Motion cue helps in predicting
better matte when foreground color coincides with the background
and foreground moves in front of the background.

is the same as GAdobe, but without the motion cue block.
We train both GAdobe and Gstill on the synthetic-composite
Adobe dataset, following the same training protocol as de-
scribed in the paper, for both networks. We then test both
GAdobe and Gconcat on our real video dataset.

In Figure 5 of this document and in Figure 5 of the main
paper, we show the role motion cue plays in improving the
alpha matte estimation. Specifically, the motion cue helps
when foreground color matches the background, and when
the foreground is moving significantly. Due to the fore-
ground motion, the network can utilize additional frames
(4 in this case) to determine that the regions which move
are more likely to be foreground than the background, even
though the color matches with the background. Note that,
this may not be always true, e.g. a shadow cast on the back-
ground also moves with the foreground. Small camera mo-
tion with a handheld camera can also effectively cause mo-
tion in the background due to misregistration. Additionally,
since we consider only a small time window of 1.33 secs
for the motion cue, often there is lack of information as the
foreground appears to be almost static during that time.

5



To reiterate: whenever comparing to competing meth-
ods, we set the motion cue to M = {I, I, I, I} and treat all
images (including video frames) independently.

4.3. ‘Ours-Real’ vs ‘Ours-Adobe’

Here we show more comparisons between using just the
GAdobe network for matting (‘Ours-Adobe’) and using the
full network GReal guided by GAdobe and discriminator D
(‘Ours-Real’). In the main paper, we present an ablation
study comparing ‘Ours-Real’ with ‘Ours-Adobe’ as both a
user study in Table 3 and with qualitatively comparisons in
Figure 6. Additional visual comparison on our test videos
are presented in our project webpage. In Figure 6 of this
document, we provide additional qualitative comparison be-
tween ‘Ours-Real’ and ‘Ours-Adobe’. We find that ‘Ours-
Real’ is generally better though on occasion it is not; (k)
and (l) are instances where ‘Ours-Real’ produces an infe-
rior matte compared to ‘Ours-Adobe’.

4.4. Role of background and segmentation

The captured background image without the subject and
the estimated soft segmentation map are two key addi-
tional inputs that helps in estimating the foreground and al-
pha matte. We found that omitting the background image
from the baseline GAdobe model degrades results substan-
tially: SAD error of 8.33 without background vs. 1.73 with
background on synthetic-composite Adobe dataset. For
backgrounds that are relatively distant or roughly planar,
homography-based alignment is accurate, and the network
learns to handle remaining mis-registrations by training on
hand-held videos. Alignment fails when the background,
e.g., has two planes (Fig 4f, with two orthogonal walls).

Soft segmentation is obtained by eroding and dilating
the segmentation predicted by Deeplabv3+. We observe
that eroding and dilating the segmentation by 20 steps only
increase the SAD error from 1.73 to 1.76 on synthetic-
composite Adobe dataset. Hence our method is quite ro-
bust to errors in segmentation, and soft segmentation only
indicates which is the foreground subject in the image. In
contrast, the captured background plays more crucial role in
the performance of the method.

References
[1] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, 2018.

[2] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1125–1134, 2017.

[3] Ning Xu, Brian Price, Scott Cohen, and Thomas Huang. Deep
image matting. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2970–2979,
2017.

[4] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2223–2232,
2017.

6



Figure 6. Ours-Real vs Ours-Adobe. ‘Ours-Real’ is trained on real data guided by ‘Ours-Adobe’ (trained on synthetic-composite dataset)
along with an adversarial loss. (k) and (l) are instances where ‘Ours-Real’ produces worse result compared to ‘Ours-Adobe’.

7


