PFRL: Pose-Free Reinforcement Learning for 6D Pose Estimation -
Supplementary Material

1. Detailed Explanation of Pose Transforma-
tion

As stated in the main paper (Section 3.1), the key idea is
to disentangle the rotation and translation, and further dis-
cretize each individual degree of freedom for the actions. At
each step, for each of the rotation and translation, we pro-
vide 13 actions to rotate (or translate) the object along an
axis in a directional small or large step, or stay still (See the
Figure[I). The discretization converts the pose regression to
a classification task, which tremendously reduces the train-
ing difficulty.
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Figure 1. Illustration of pose transformations.

2. Additional Evaluation of the Refined Poses

Table [I] shows the additional evaluation of the refined
poses with AAE initialization on the whole LINEMOD test
set. The average depth error is 1.66cm, a bit larger than
error on axis x and y. For rotation the error on elevation
and in-plane tilt is smaller than on azimuth. We observe
that the in-plane rotation exhibits more significant changes
in 2D masks, which may explain the higher accuracy on this
DoF.

3. Results with DPOD [3] as initial pose

Instead of AAE, we utilize PFRL to refine DPOD-
syn’s [5] initial poses provided by the author to make a fair
comparison. The results of recall scores on ADD are shown

‘ Rotation
‘ X y z ‘ Rx Ry Rz
Mean(cm, °) 0.21 021 166 | 1255 492 637
Std(cm, °©) 0.31 029 1953042 857 1852

2em,©) | 9953 99.67 7272 | 33.06 41.64 56.66
Acc | 5em, ) | 9999  99.99 9449 | 5947 7036 77.99
(%) | 10(cm, ) | 100.00 100.00 99.25 | 77.80 88.35 88.00

Table 1. Accuracy of 6 degrees of freedom. Rx, Ry, Rz represent
azimuth, elevation, and in-plane rotation respectively.

‘ Translation

in Table 2] When using the same initial poses, our method
performs generally better than DPOD-syn.

Metric ‘ Recall scores (%) on ADD

Class ‘ ape ‘ bv. ‘ cam ‘ can ‘ cat ‘ driller ‘ duck
DPOD-refine | 52.12 | 64.67 | 22.23 | 77.51 | 56.49 | 65.23 | 49.04

PFRL | 69.26 | 78.68 | 27.77 | 77.16 | 64.52 | 79.90 | 48.24

Class‘ egg. ‘ glue ‘ hol. ‘ iron ‘ lamp ‘phone ‘ Mean

DPOD-refine | 62.21 | 38.94 | 25.55 | 98.43 | 58.35 | 33.79 | 54.20
PFRL | 67.68 | 37.73 | 27.87 | 88.00 | 73.67 | 37.51 | 59.85

Table 2. DPOD-refine/PFRL with DPOD init.

4. Generalization Ability

To test our method’s generalization ability, we evaluate
the model on testing objects different from the training ob-
ject on T-LESS dataset. Specifically, we trained 3 models
on object 19-21 and test them on object 6-10 with AAE ini-
tialization separately. As shown in Table[3] the three models
all improve the recall of VSD on 5 unseen objects for about
16%-18%, which shows our method can well generalize to
unseen objects.

5. Class-Agnostic Training

The class-specific training setting in the original
manuscript was adopted considering that the RL training is
quite time-consuming and difficult to converge, especially
in the case of multiple objects. We conducted class-agnostic
training with the same network structure on LineMOD
dataset, in which we just replaced the training data from



Metric ‘ Recall scores (%) on VSD
Test Obj 6 7 8
TrainObj | 19 20 21 19 20 21 9 20 21
AAE 523 36.6 22.1
+PFRL | 59.1 625 569 | 51.0 521 512|421 423 427
Test Obj 9 10 Mean
TrainObj | 19 20 21 19 20 21 19 20 21
AAE 46.5 14.3 343
+PFRL | 549 569 544|470 505 469|508 529 504

Table 3. Recall of VSD on T-LESS objects 6-11 for the model
trained on object 19-21.

one object to all 13 objects. As shown in Table [ al-
though the class-agnostic training result can not compare
with the class-specific training, it can still bring appreciable
improvement to the initial poses.

Metric | ADD(%)

Class ‘ ape ‘ bv. ‘ cam can ‘ cat ‘ driller ‘ duck

AAE | 396 | 2092 | 30.47 | 35.87 | 17.90 | 23.99 | 4.86
Cls Agnos | 22.00 | 56.26 | 14.02 | 53.84 | 44.21 | 4341 | 32.68

Class | egg. | glue | hol. | iron | lamp | phone | Mean

AAE | 81.01 | 4549 | 17.60 | 32.03 | 60.47 | 33.79 | 31.41
Cls Agnos | 87.51 | 63.22 | 25.78 | 55.87 | 91.17 | 38.43 | 48.34

Table 4. Class agnostic training results with AAE initialization.

6. Details of Optimization Rules
6.1. On Policy Part

We employ the proximal policy optimization algorithm
[3]] as the basic update rule. Let the 6D pose estimation pro-
cedure with one RGB image have K frames in total. At
each time step k, let s; denote the current state, then the
relative SE(3) transformation a;, = [ag|a:] can be sam-
pled from the network output distribution with input sg. 7y
denotes the current network output distribution, and
denotes the network output distribution when a;, was sam-
pled. V(s) = Eay spyy...[Dore0 V' ki) is the value func-
tion, which is meant to be the expected cumulative reward
under current state s;. Vjp denotes V' estimated by another
network with input sy that shares the same weights as the
action network except for the last layer. The clipped surro-
gate objective can be written as:

Lc(0) = Emin (& (0) A, clip(&,(0), 1—¢, 1+€) Ay)], (1)

where
mo(ak|sk)

T o4 (ak |Sk) .

&r(0) = 2

The Ay, in Eq. is the advantage estimator defined as:
A = =V(sk) + 7 + g1 + o+ g +

vK=kV (sk). The value loss can be written as:
Ly (8) = (Vo(st) = Vie)*, 3)
where
Virg = 1 +97k41 + o 9% Vo (s6). @)

And the entropy regularization term to encourage adequate
exploration can be written as:

L.(0) = mglog my. 5)
The on-policy update loss L,, can be written as:
Lon = Le + Ay Ly + AeLe. (6)
6.2. Off Policy Part

We introduce the V-trace target from [1]] to use samples
more efficiently with an off-policy update and give value
function a more accurate estimation. The n-step V-trace tar-
get can be written as:

k+n—1 q—1
Virace = V(Sk) + Z ’Yq_k(H Ci)5qV7 @)
q=k i=k

where

8qV = pg(rqg + vV (sqy1) — V(sq)),

s 770(aq|sq)
= Mup, —————~),
P =P s ®)
¢; = min(c, 7F0(ai|si)

T o1 (ai ‘Si) .

In Eq.(8), p, and ¢; are truncated importance sampling
weights, and the truncated parameters p > ¢. The off-policy
value function loss is:

Loff(e) = (%(Sk) - V;race)2~ 9)
7. Results on T-LESS

Fig. [2]shows some qualitative results of objects 19-23 on
T-LESS dataset [2].
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