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1. Detailed Explanation of Pose Transforma-
tion

As stated in the main paper (Section 3.1), the key idea is
to disentangle the rotation and translation, and further dis-
cretize each individual degree of freedom for the actions. At
each step, for each of the rotation and translation, we pro-
vide 13 actions to rotate (or translate) the object along an
axis in a directional small or large step, or stay still (See the
Figure 1). The discretization converts the pose regression to
a classification task, which tremendously reduces the train-
ing difficulty.

Figure 1. Illustration of pose transformations.

2. Additional Evaluation of the Refined Poses

Table 1 shows the additional evaluation of the refined
poses with AAE initialization on the whole LINEMOD test
set. The average depth error is 1.66cm, a bit larger than
error on axis x and y. For rotation the error on elevation
and in-plane tilt is smaller than on azimuth. We observe
that the in-plane rotation exhibits more significant changes
in 2D masks, which may explain the higher accuracy on this
DoF.

3. Results with DPOD [5] as initial pose

Instead of AAE, we utilize PFRL to refine DPOD-
syn’s [5] initial poses provided by the author to make a fair
comparison. The results of recall scores on ADD are shown

Translation Rotation

x y z Rx Ry Rz

Mean(cm, ◦) 0.21 0.21 1.66 12.55 4.92 6.37
Std(cm, ◦) 0.31 0.29 1.95 30.42 8.57 18.52

Acc
(%)

2(cm, ◦) 99.53 99.67 72.72 33.06 41.64 56.66
5(cm, ◦) 99.99 99.99 94.49 59.47 70.36 77.99

10(cm, ◦) 100.00 100.00 99.25 77.80 88.35 88.00
Table 1. Accuracy of 6 degrees of freedom. Rx, Ry, Rz represent
azimuth, elevation, and in-plane rotation respectively.

in Table 2. When using the same initial poses, our method
performs generally better than DPOD-syn.

Metric Recall scores (%) on ADD

Class ape bv. cam can cat driller duck

DPOD-refine 52.12 64.67 22.23 77.51 56.49 65.23 49.04
PFRL 69.26 78.68 27.77 77.16 64.52 79.90 48.24

Class egg. glue hol. iron lamp phone Mean

DPOD-refine 62.21 38.94 25.55 98.43 58.35 33.79 54.20
PFRL 67.68 37.73 27.87 88.00 73.67 37.51 59.85

Table 2. DPOD-refine/PFRL with DPOD init.

4. Generalization Ability
To test our method’s generalization ability, we evaluate

the model on testing objects different from the training ob-
ject on T-LESS dataset. Specifically, we trained 3 models
on object 19-21 and test them on object 6-10 with AAE ini-
tialization separately. As shown in Table 3, the three models
all improve the recall of VSD on 5 unseen objects for about
16%-18%, which shows our method can well generalize to
unseen objects.

5. Class-Agnostic Training
The class-specific training setting in the original

manuscript was adopted considering that the RL training is
quite time-consuming and difficult to converge, especially
in the case of multiple objects. We conducted class-agnostic
training with the same network structure on LineMOD
dataset, in which we just replaced the training data from
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Metric Recall scores (%) on VSD

Test Obj 6 7 8
Train Obj 19 20 21 19 20 21 19 20 21

AAE 52.3 36.6 22.1
+PFRL 59.1 62.5 56.9 51.0 52.1 51.2 42.1 42.3 42.7

Test Obj 9 10 Mean
Train Obj 19 20 21 19 20 21 19 20 21

AAE 46.5 14.3 34.3
+PFRL 54.9 56.9 54.4 47.0 50.5 46.9 50.8 52.9 50.4

Table 3. Recall of VSD on T-LESS objects 6-11 for the model
trained on object 19-21.

one object to all 13 objects. As shown in Table 4, al-
though the class-agnostic training result can not compare
with the class-specific training, it can still bring appreciable
improvement to the initial poses.

Metric ADD(%)

Class ape bv. cam can cat driller duck

AAE 3.96 20.92 30.47 35.87 17.90 23.99 4.86
Cls Agnos 22.00 56.26 14.02 53.84 44.21 43.41 32.68

Class egg. glue hol. iron lamp phone Mean

AAE 81.01 45.49 17.60 32.03 60.47 33.79 31.41
Cls Agnos 87.51 63.22 25.78 55.87 91.17 38.43 48.34

Table 4. Class agnostic training results with AAE initialization.

6. Details of Optimization Rules
6.1. On Policy Part

We employ the proximal policy optimization algorithm
[3] as the basic update rule. Let the 6D pose estimation pro-
cedure with one RGB image have K frames in total. At
each time step k, let sk denote the current state, then the
relative SE(3) transformation ak = [aR|at] can be sam-
pled from the network output distribution with input sk. πθ
denotes the current network output distribution, and πθold

denotes the network output distribution when ak was sam-
pled. V (sk) = Eak,sk+1...[

∑∞
l=0 γ

lrk+l] is the value func-
tion, which is meant to be the expected cumulative reward
under current state sk. Vθ denotes V estimated by another
network with input sk that shares the same weights as the
action network except for the last layer. The clipped surro-
gate objective can be written as:

Lc(θ) = Ê[min(ξk(θ)Âk, clip(ξk(θ), 1−ε, 1+ε)Âk)], (1)

where

ξk(θ) =
πθ(ak|sk)
πθold(ak|sk)

. (2)

The Âk in Eq.(1) is the advantage estimator defined as:
Âk = −V (sk) + rk + γrk+1 + ... + γK−k+1rK−1 +

γK−kV (sK). The value loss can be written as:

Lv(θ) = (Vθ(sk)− Vtarg)
2, (3)

where

Vtarg = rk + γrk+1 + ...+ γK−kVθold(sK). (4)

And the entropy regularization term to encourage adequate
exploration can be written as:

Le(θ) = πθ log πθ. (5)

The on-policy update loss Lon can be written as:

Lon = Lc + λvLv + λeLe. (6)

6.2. Off Policy Part

We introduce the V-trace target from [1] to use samples
more efficiently with an off-policy update and give value
function a more accurate estimation. The n-step V-trace tar-
get can be written as:

Vtrace = V (sk) +

k+n−1∑
q=k

γq−k(

q−1∏
i=k

ci)δqV, (7)

where

δqV = ρq(rq + γV (sq+1)− V (sq)),

ρq = min(ρ,
πθ(aq|sq)
πθold(aq|sq)

),

ci = min(c,
πθ(ai|si)
πθold(ai|si)

).

(8)

In Eq.(8), ρq and ci are truncated importance sampling
weights, and the truncated parameters ρ ≥ c. The off-policy
value function loss is:

Loff(θ) = (Vθ(sk)− Vtrace)
2. (9)

7. Results on T-LESS
Fig. 2 shows some qualitative results of objects 19-23 on

T-LESS dataset [2].
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