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1. Overview

This supplementary material contains the following in-
formation:

• We introduce the implementation details of the pro-
posed InterFaceGAN in Sec.2.

• We provide the detailed proof of Property 2 in the main
paper in Sec.3.

• Please also refer to this video to see continuous at-
tribute editing results.

2. Implementation Details

We choose five key facial attributes for analysis, includ-
ing pose, smile (expression), age, gender, and eyeglasses.
The corresponding positive directions are defined as turning
right, laughing, getting old, changing to male, and wearing
eyeglasses. Note that we can always plug in more attributes
easily as long as the attribute detector is available.

To better predict these attributes from synthesized im-
ages, we train an auxiliary attribute prediction model using
the annotations from the CelebA dataset [3] with ResNet-
50 network [1]. This model is trained with multi-task losses
to simultaneously predict smile, age, gender, eyeglasses,
as well as the 5-point facial landmarks. Here, the facial
landmarks will be used to compute yaw pose, which is also
treated as a binary attribute (left or right) in further analysis.
Besides the landmarks, all other attributes are learned as
bi-classification problem with softmax cross-entropy loss,
while landmarks are optimized with l2 regression loss.
As images produced by PGGAN and StyleGAN are with
1024×1024 resolution, we resize them to 224×224 before
feeding them to the attribute model.

Given the pre-trained GAN model, we synthesize 500K
images by randomly sampling the latent space. There are
mainly two reasons in preparing such large-scale data: (i)
to eliminate the randomness caused by sampling and make
sure the distribution of the latent codes is as expected, and

(ii) to get enough wearing-glasses samples, which are really
rare in PGGAN model.

To find the semantic boundaries in the latent space,
we use the pre-trained attribute prediction model to assign
attribute scores for all 500K synthesized images. For each
attribute, we sort the corresponding scores, and choose 10K
samples with highest scores and 10K with lowest ones as
candidates. The reason in doing so is that the prediction
model is not absolutely accurate and may produce wrong
prediction for ambiguous samples, e.g., middle-aged person
for age attribute. We then randomly choose 70% samples
from the candidates as the training set to learn a linear
SVM, resulting in a decision boundary. Recall that, normal
directions of all boundaries are normalized to unit vectors.
Remaining 30% are used for verifying how the linear
classifier behaves. Here, for SVM training, the inputs are
the 512d latent codes, while the binary labels are assigned
by the auxiliary attribute prediction model.

3. Proof
In this part, we provide detailed proof of Property 2 in

the main paper. Recall this property as follow.
Property 2 Given n ∈ Rd with nTn = 1, which defines
a hyperplane, and a multivariate random variable z ∼
N (0, Id), we have P(|nT z| ≤ 2α

√
d
d−2 ) ≥ (1 −

3e−cd)(1− 2
αe
−α2/2) for any α ≥ 1 and d ≥ 4. Here P(·)

stands for probability and c is a fixed positive constant.
Proof.

Without loss of generality, we fix n to be the first
coordinate vector. Accordingly, it suffices to prove that

P(|z1| ≤ 2α
√

d
d−2 ) ≥ (1− 3e−cd)(1− 2

αe
−α2/2), where

z1 denotes the first entry of z.
As shown in Fig.1, let H denote the set

{z ∼ N(0, Id) : ||z||2 ≤ 2
√
d, |z1| ≤ 2α

√
d

d− 2
},

where || · ||2 stands for the l2 norm. Obviously, we have

https://www.youtube.com/watch?v=uoftpl3Bj6w
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Figure 1: Illustration of Property 2, which shows that most of the
probability mass of high-dimensional Gaussian distribution lies in
the thin slab near the “equator”.

P(H) ≤ P(|z1| ≤ 2α
√

d
d−2 ). Now, we will show P(H) ≥

(1− 3e−cd)(1− 2
αe
−α2/2)

Considering the random variable R = ||z||2, with
cumulative distribution function F (R ≤ r) and density
function f(r), we have

P(H) = P(|z1| ≤ 2α

√
d

d− 2
|R ≤ 2

√
d)P(R ≤ 2

√
d)

=

∫ 2
√
d

0

P(|z1| ≤ 2α

√
d

d− 2
|R = r)f(r)dr.

According to Theorem 1 below, when r ≤ 2
√
d, we have

P(H) =

∫ 2
√
d

0

P(|z1| ≤ 2α

√
d

d− 2
|R = r)f(r)dr

=

∫ 2
√
d

0

P(|z1| ≤
2
√
d

r

α√
d− 2

|R = 1)f(r)dr

≥
∫ 2
√
d

0

P(|z1| ≤
α√
d− 2

|R = 1)f(r)dr

≥
∫ 2
√
d

0

(1− 2

α
e−α

2/2)f(r)dr

= (1− 2

α
e−α

2/2)

∫ 2
√
d

0

f(r)dr

= (1− 2

α
e−α

2/2)P(0 ≤ R ≤ 2
√
d).

Then, according to Theorem 2 below, by setting β =
√
d,

we have

P(H) = (1− 2

α
e−α

2/2)P(0 ≤ R ≤ 2
√
d)

≥ (1− 2

α
e−α

2/2)(1− 3e−cd).

Q.E.D.

Theorem 1 Given a unit spherical {z ∈ Rd : ||z||2 = 1},
we have P(|z1| ≤ α√

d−2 ) ≥ 1 − 2
αe
−α2/2 for any α ≥ 1

and d ≥ 4.
Proof.

By symmetry, we just prove the case where z1 ≥ 0.
Also, we only consider about the case where α√

d−2 ≤ 1.
Let U denote the set {z ∈ Rd : ||z||2 = 1, z1 ≥ α√

d−2},
and K denote the set {z ∈ Rd : ||z||2 = 1, z1 ≥ 0}. It
suffices to prove that the surface of U area and the surface
of K area in Fig.2 satisfy

surf(U)

surf(K)
≤ 2

α
e−α

2/2,

where surf(·) stands for the surface area of a high dimen-
sional geometry. Let A(d) denote the surface area of a d-
dimensional unit-radius ball. Then, we have

surf(U) =

∫ 1

α√
d−2

(1− z21)
d−2
2 A(d− 1)dz1

≤
∫ 1

α√
d−2

e−
d−2
2 z21A(d− 1)dz1

≤
∫ 1

α√
d−2

z1
√
d− 2

α
e−

d−2
2 z21A(d− 1)dz1

≤
∫ ∞

α√
d−2

z1
√
d− 2

α
e−

d−2
2 z21A(d− 1)dz1

=
A(d− 1)

α
√
d− 2

e−α
2/2.

Similarly, we have

surf(K) =

∫ 1

0

(1− z21)
d−2
2 A(d− 1)dz1

≥
∫ 1√

d−2

0

(1− z21)
d−2
2 A(d− 1)dz1

≥ 1√
d− 2

(1− 1

d− 2
)
d−2
2 A(d− 1).

Considering the fact that (1−x)a ≥ 1−ax for any a ≥ 1
and 0 ≤ x ≤ 1, we have

surf(K) ≥ 1√
d− 2

(1− 1

d− 2
)
d−2
2 A(d− 1)

≥ 1√
d− 2

(1− 1

d− 2

d− 2

2
)A(d− 1)

=
A(d− 1)

2
√
d− 2

.

Accordingly,

surf(U)

surf(K)
≤

A(d−1)
α
√
d−2 e

−α2/2

A(d−1)
2
√
d−2

=
2

α
e−α

2/2.
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Figure 2: Diagram for Theorem 1.

Q.E.D.
Theorem 2 (Gaussian Annulus Theorem [2]) For a d-
dimensional spherical Gaussian with unit variance in each
direction, for any β ≤

√
d, all but at most 3e−cβ

2

of the
probability mass lies within the annulus

√
d− β ≤ ||z||2 ≤√

d+ β, where c is a fixed positive constant.
That is to say, given z ∼ N(0, Id), β ≤

√
d, and a

constant c > 0, we have

P(
√
d− β ≤ ||z||2 ≤

√
d+ β) ≥ (1− 3e−cβ

2

).
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