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1. Details of Unfolding Optimization Loop
In this section, we go into detail about unfolding opti-

mization loop. As mentioned in the main paper, one opti-
mization step of [2] consists of two steps: (1) computing
the gradient of texture loss with respect to the input, and (2)
refining the gradient using the optimizer.

Computing the gradient The step (1) is an evaluation
of the forward and backward propagation of the descrip-
tive network, VGG19 [4]. The backward computation can
be implemented by components, such as transposed convo-
lutional layers, gated layers and tiled layers, in most deep
learning frameworks.

Refining the gradient Unfolding the step (2) depends on
the choice of optimizers. For Stochastic Gradient Descent
(SGD), the optimizer is simply an addition of the gradient
(scaled by the learning rate) and the input. For more ad-
vanced methods like Adam [3] and L-BFGS [5], the com-
putation is more complex but still can be implemented by
basic arithmetics.

• Adam keeps the moving average elementwise first-
order and second-order statistics of the gradients and
computes the adaptive learning rate for each parame-
ter. The compuation of refined gradient ∆x is defined
as follows:

gt = ∇xLtex(xt, x̃),

mt = β1 ·mt−1 + (1− β1) · gt,
m̂t = mt/(1− βt

1),

vt = β2 · vt−1 + (1− β2) · g2t ,
v̂t = vt/(1− βt

2),

∆xt = − α · m̂t/(
√
v̂t + ε),

(1)

where β1, β2, α, ε are constant hyperparameters. The
computation of moving average statistics can be im-
plemented by a composite layer like BatchNorm.

• L-BFGS is a Quasi-Newton optimization method. It
starts with an estimate of the optimal solution, x0, and
refines the estimate iteratively based on the history of
gradients and updates. The computation of descent di-
rection is defined as follows:

gt = ∇xLtex(xt, x̃),

st = xt+1 − xt,
yt = gt+1 − gt,
ρt = 1/(yTt st),

Ht+1 = (I − ρtstyTt )Ht(I − ρtytsTt ) + ρtsts
T
t ,

zt = Htgt.
(2)

The inverse Hessian is not calculated explicitly. In-
stead, the search direction, zt, is computed iteratively
from the history of gt, st and yt. The scaling of the de-
scent direction is determined by a line search method,
which can be implemented by a conditional loop in a
deep learning framework. The step length of 1 is often
accepted in most iterations.

Therefore, both steps of (1) and (2) can be implemented
by a feed-forward network and some additional arithmetic
operations depending on the optimizer. The whole opti-
mization process simply repeats the step for hundreds of
times and finally derives a long computational graph.

2. More Experimental Results

We show more synthesized texture images using our
method in Figure 1, 2, 3, 4, 5 and 6.

3. Extended Objective Function

We show synthesized texture images using our method
with objective functions of [1] in Figure 7.



Figure 1. Results of ProPO. The leftmost column contains the input noise images x[0] ∼ Z. The rightmost column contains the target
texture images x̃. The intermediate five columns contain the results of x[1], x[2], x[3], x[4], x[5] respectively. Each synthesis is repeated
three times using different noise inputs.



Figure 2. Results of ProPO. The leftmost column contains the input noise images x[0] ∼ Z. The rightmost column contains the target
texture images x̃. The intermediate five columns contain the results of x[1], x[2], x[3], x[4], x[5] respectively. Each synthesis is repeated
three times using different noise inputs.



Figure 3. Results of ProPO. The leftmost column contains the input noise images x[0] ∼ Z. The rightmost column contains the target
texture images x̃. The intermediate five columns contain the results of x[1], x[2], x[3], x[4], x[5] respectively. Each synthesis is repeated
three times using different noise inputs.



Figure 4. Results of ProPO. The leftmost column contains the input noise images x[0] ∼ Z. The rightmost column contains the target
texture images x̃. The intermediate five columns contain the results of x[1], x[2], x[3], x[4], x[5] respectively. Each synthesis is repeated
three times using different noise inputs.



Figure 5. Results of ProPO. The leftmost column contains the input noise images x[0] ∼ Z. The rightmost column contains the target
texture images x̃. The intermediate five columns contain the results of x[1], x[2], x[3], x[4], x[5] respectively. Each synthesis is repeated
three times using different noise inputs.



Figure 6. Results of ProPO. The leftmost column contains the input noise images x[0] ∼ Z. The rightmost column contains the target
texture images x̃. The intermediate five columns contain the results of x[1], x[2], x[3], x[4], x[5] respectively. Each synthesis is repeated
three times using different noise inputs.



Figure 7. Results of our method (the second column) with long-range texture loss [1] (the first column).
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