
Supplementary Material:
Joint Location and Orientation Estimation by Cross-View Matching

1. Localization with Unknown Orientation and Limited FoV
1.1. Location Estimation

In the main paper, we report the top-1, top-5, top-10 and top-1% recall rates of our algorithm and the state-of-the-art
on localizing ground images with unknown orientation and varying FoVs. In this section, we present the complete r@K
performance in Figure 1. It can be seen that our method achieves consistently better performance than the state-of-the-art
algorithms in all the localization scenarios.

Figure 1. Location estimation performance (r@K) of different algorithms on unknown orientation and varying FoVs.

Training and Testing on Different FoVs: In real-world scenarios, a camera’s FoV at inference time may not be the same as
that used during training. Therefore, we also investigate the impact of using a model trained on a different FoV. We employ
a model trained on ground images with a specific FoV and test its performance on ground images with varying FoVs. Figure
2 illustrates the recall curves at top-1, top-5, top-10 and top-1% with respect to different testing FoVs, and the numerical
results are presented in Table 1.

It is apparent in Figure 2 that, as the test FoV increases, all models attain better performance. This implies that having
a greater amount of scene contents reduces the matching ambiguity, and our method is able to exploit such information to
achieve better localization. Furthermore, using a model trained with a FoV similar to the test image produces better results
in general. Therefore, it is advisable to adopt a pretrained model with FoV similar to the test image.

1.2. Orientation Estimation

We provide additional visualization of estimating orientations for ground images with 360◦, 180◦, 90◦ and 70◦ FoV in
Figure 4. As illustrated in Figure 4, our Dynamic Similarity Matching (DSM) module is able to estimate the orientation of
ground images with varying FoVs.
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Figure 2. Recall performance at top-1, top-5, top-10 and top-1% of our method with different training and testing FoVs.

Table 1. Numerical recall results of our method with different training and testing FoVs.
XXXXXXXXXTrain FoV

Test FoV 360◦ 180◦ 90◦ 70◦

r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

CVUSA

360◦ 78.11 89.46 92.90 98.50 48.38 66.73 73.82 90.93 16.36 30.67 37.78 63.82 9.26 19.82 26.08 52.45
180◦ 74.30 87.37 91.25 98.27 48.53 68.47 75.63 93.02 17.91 33.51 41.24 67.40 10.42 22.43 29.06 55.98
90◦ 60.13 76.23 82.40 96.21 38.98 57.94 66.38 89.39 16.19 31.44 39.85 71.13 10.15 22.02 29.50 62.78
70◦ 51.65 69.56 76.09 93.75 31.79 49.99 58.45 85.69 12.74 26.78 34.73 68.00 8.78 19.90 27.30 61.20

CVACT_val

360◦ 72.91 85.70 88.88 95.28 44.43 63.23 69.73 87.09 13.26 26.62 33.14 60.33 6.70 16.18 21.77 48.05
180◦ 72.87 85.68 88.97 95.67 49.12 67.83 74.18 89.93 17.13 33.68 41.55 67.99 10.00 22.10 28.97 56.26
90◦ 64.00 78.11 82.77 94.10 43.42 61.17 68.22 86.80 18.11 33.34 40.94 68.05 11.14 23.65 31.34 59.73
70◦ 55.73 71.63 77.35 92.02 34.92 52.62 60.52 83.31 13.86 27.81 35.24 64.14 9.29 20.72 27.13 57.08

Figure 3. Examples of symmetric scenes (aerial images). At these locations, it is hard to determine the orientation (azimuth angle) of a
ground image if it only contains a small sector of the aerial image.

When a camera has a small FoV, it suffers high ambiguity to determine the orientation by matching the ground image to
its corresponding aerial one. We illustrate an example in Figure 4(c) where the error of orientation estimation for a road can
be 180◦. As seen in the first instance of Figure 4(c), the road occupies a large portion of the ground image. While in the aerial
image, the road is symmetric in respect to the image center (i.e., camera location). Thus there are two peaks in the similarity
curve.

If the peak on the left is taller than the peak on the right, the estimated orientation will be wrong. Figure 3 provides
another three examples where scene contents are similar in multiple directions. At these locations, it is hard to determine the
orientation of a ground camera which has a small FoV while the estimated location is correct.

2. Time Efficiency
In order to improve the time efficiency, we compute the correlation in our DSM module by using Fast Fourier Transform

during the inference process. To be specific, we store the Fourier coefficients of aerial features in the database, and calculate
the Fourier coefficients of the ground feature in the forward pass. By doing so, the computation flops of the correlation
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Figure 4. Visualization of estimated orientations for ground images with varying FoVs. For each ground and aerial pair, we visualize their
similarity scores at different azimuth angles as a red curve on the polar-transformed aerial features. As indicated by the arrows on the
similarity curves, the positions of similarity maxima in the curves correspond to the orientation of ground images.

are 13NHWC (including 4NHWC flops for coefficients multiplication in the spectral domain, and 1.5NHCW log2 W
flops for the inverse Fast Fourier Transform), where H , W and C is the height, width and channel number of the global
feature descriptor of an aerial image, N is the number of database aerial images, and W = 64 in our method. In contrast to
conducting correlation in the spatial domain where the computation flops are 2NHW 2C, the computation time is reduced
by a factor of 1

10 ( 13NHWC
2NHW 2C ≈ 1

10 ).
We conduct the retrieval process of a query image on a 3.70 GHz i7 CPU system, and the codes are implemented in

Python3.6. For a ground panorama with unknown orientation, it takes an average time of 0.15s for retrieving its aerial
counterpart from a database containing 8884 reference images. This demonstrates the efficiency of the proposed algorithm.

3. Trainable Parameters
Since the authors of CVM-NET [1], Liu & Li [2] and CVFT [3] provide the source code of their works, we compare the

trainable parameters and model size of our network with their methods in Table 2. Our network not only outperforms the
state-of-the-art but also is more compact, facilitating the deployment of our network.



Table 2. Comparison of trainable parameters and model size with recent methods.

Methods # Parameters Model size
CVM-NET [1] 160,311,424 1.8G
Liu & Li [2] 30,695,808 369.6M
CVFT [3] 26,814,657 336.8M

Ours 14,472,864 244.8M
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