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In this supplementary material, we provide more details
and comparisons of our implementation. These include:

• A more detailed description of the data collection pro-
cess: the ground-truth generation methods (Sec. 1.1),
the user study and participants (Sec. 1.2), and the final
dataset analysis (Sec. 1.3),
• Some additional details of our implementation and de-

sign rationale (Sec. 2),
• More details of the effectiveness of our model (Sec. 3),

and
• Some additional details when evaluating against state-

of-the-arts [1, 2, 6, 7, 8] (Sec. 4), and further compari-
son with [2] (Sec. 5)

1. Saliency Rank Dataset from Attention Shift
First, we provide further details of the three main ap-

proaches that we propose to generate our ground-truth
saliency rank annotations, and our user study.

1.1. Data Collection

To our knowledge, there are no large-scale dataset avail-
able for salient object ranking based on attention shift.
Hence, we propose a new large-scale salient object ranking
dataset, by combining the widely used MS-COCO dataset
[5] with the SALICON dataset [3]. MS-COCO contains
complex images with ground-truth object segmentation,
whilst SALICON is built on top of MS-COCO to provide
mouse-trajectory based fixations. The SALICON dataset
[3] provides two sources of fixation data: 1) fixation point
sequences and 2) fixation maps for each image. We exploit
these two sources and consider three main approaches to
generate our ground-truth saliency rank annotations.

Approach 1: For a given image, we follow each of the
fixation points in a fixation sequence and assign descend-
ing saliency scores to the fixated image pixels. We repeat
this scoring of pixels over all observer fixation data. The

saliency rank of an object can be computed by aggregat-
ing these saliency scores that the object contains (i.e., the
higher the aggregated scores, the more salient the object and
the higher its rank). The number of fixation points varies
among observers and leads to a large difference in scores.

We first assign scores to pixel values using fixation
points from the SALICON [3] dataset. Then we get the
score for objects based on the values of pixels that be-
long to those objects. More specifically, for every image
I ∈ RW×H of dimension W × H , there are N number of
observers. Let F j be the fixation sequence obtained from
one of the N observers j ∈ [1, N ] and a fixation f j

i with
index order i ∈ [1, t] that represents the ith fixation in the
sequence F j of length t. We then assign a score to image
pixel p if the fixation f j

i falls on p using:

vp =

N∑
j

t∑
i

g(f j
i ), if f j

i = p, (1)

g(f t
i ) = 1− i

t
, (2)

where vp denotes the score at a pixel p ∈ I aggregating
from all N observers’ fixation data. The function g takes
the temporal order ith of a fixation point in the sequence
into account, and assigns lower values to fixation points if
they are latter in the sequence.

Note that we are interested in the importance of the order
of fixation points. We thus do not take into account the du-
ration of fixation points in our formulation. There are large
variances in the duration of fixations among different ob-
servers. Considering the durations of fixation points would
cause the scoring to fluctuate greatly. Further, it is diffi-
cult (if not impossible) to obtain the exact duration of each
fixation point whilst the fixations are obtained from a re-
sampling process [3]. In contrast, using the order of fixation
points would ensure that there is a consistent gap between
the scores of each pair of consecutive fixation points, and
lead to higher stability in the final object scoring.



Next, we try to accommodate the varying sizes of ob-
jects in an image. Larger objects may collect more fixations
from observers and be considered more salient with higher
ranks. However, small objects that are rare may also be
more salient even if there are fewer fixations. We do not
know which methods would reflect how humans rank mul-
tiple objects in term of saliency. We try four methods to
aggregate scores for subsequent saliency ranks of objects,
namely: FixSeq-avg (average score), FixSeq-max (maxi-
mum score), FixSeq-avgPmax (average + maximum score)
and FixSeq-avgMmax (average × maximum score).

Let o be one of the objects in an image I , |o| be the num-
ber of pixels in o, and vop be the score of a pixel p ∈ o inside
an object. We define:

FixSeq-avg(o, I) =
1

|o|
∑
p∈o

vop, (3)

FixSeq-max(o, I) = max
p∈o

(vop), (4)

FixSeq-avgPmax(o, I) = FixSeq-avg(o, I)

+FixSeq-max(o, I),
(5)

FixSeq-avgMmax(o, I) = FixSeq-avg(o, I)

×FixSeq-max(o, I).
(6)

For a given image, FixSeq-avg (Eq. 3) calculates the fi-
nal score of an object by taking the average values of pix-
els belonging to the object. It takes into account the size
differences between objects. In FixSeq-max (Eq. 4), the fi-
nal score of an object is the maximum value vop of all its
pixels. It ranks objects higher if they are observed ear-
lier in the fixation sequence. It does not concern the ob-
ject sizes. For the methods FixSeq-avgPmax (Eq. 5) and
FixSeq-avgMmax (Eq. 6), we consider weighting the final
scores by performing addition or multiplication with the re-
sults from Eq. 3 and Eq. 4, respectively. The use of addition
in FixSeq-avgPmax is a shorthand of averaging the effect of
both FixSeq-avg and FixSeq-max values. FixSeq-avgMmax
considers to weight FixSeq-avg by multiplying FixSeq-max.

In our user study, we use T = 10 as the number of top
salient objects for ground-truth rank. Note that we only use
top-5 during our prediction task. We then sort all objects in
descending order of the saliency score, and each object is
given a distinct rank.

Approach 2: This approach also considers temporal or-
der. However, we only focus on the first T distinct ob-
jects and ignore repeated fixations on already visited ob-
jects. Moreover, we directly assign a score to the whole
object if a fixation point resides in its segmentation. We
term this method as DistFixSeq.

Specifically, we define a new sequence f̂n
i by removing

fixations that fall on objects that are already visited by ear-
lier fixations in fn

i . We then define DistFixSeq, for each
object o in an image I as:

DistFixSeq(o, I) =
1

N

N∑
j

T∑
i

h(
ˆ
f j
i ), if f̂n

i ∈ o (7)

h(f̂n
i ) = T − i, (8)

where T = 10. Function h assigns higher scores to objects
if they are observed earlier. Eq. 7 takes into account only
the first T objects, then average it across all N observers.
We then obtain the ranks of objects in the order of descend-
ing scores.

Approach 3: We use fixation maps in this approach as
the source for saliency score. We directly take intensity val-
ues from the fixation map as pixel scores vp. Similar to
Approach 1, we expand this approach into four methods to
generate the final scores for each object. Accordingly, we
have FixMap-avg (average score), FixMap-max (maximum
score), FixMap-avgPmax (average + maximum score) and
FixMap-avgMmax (average×maximum score). These four
methods compute the final scores of objects in the same
way to their counterparts in Approach 1 (as in Eq. 3-6).
Again, we consider the first distinct T objects, and assign
the saliency rank in the order of descending scores.

Saliency Map: In addition to assigning a distinct rank to
each object, we also produce a saliency map for each image.
Objects are given an initial saliency value according to their
rank (i.e., Rank 1 = 1, Rank 2 = 0.9, Rank 3 = 0.8, ..., Rank
10 = 0.1). These saliency values are further multiplied by
255 and the results are assigned to the corresponding object
pixels to generate the final saliency map subsequently.

1.2. User Study

We conduct a user study with 11 participants (8 male,
3 female), in order to find out which of the 9 methods
produces the best attention shift order that respects human
judgement. We take the best method as our technique to
generate the final ground-truth saliency rank in our dataset.

For each image, the participants were presented with the
image and the nine corresponding saliency rank maps ar-
ranged in a grid. Fig. 1 shows a screenshot example of the
annotation tool used in the user study. After a briefing ses-
sion on how to use the annotation tool, every participant is
told to observe the image first, then pick the maps that show
objects with “order of decreasing attractiveness”. Partici-
pants are not told how the maps are generated. Each par-
ticipant was asked to annotate a set of 2500 images. These
images are randomly sampled from our dataset. Participants



Figure 1: Screenshot of the annotation tool used by the participants
during the user study. Participants are not told how the maps are
generated. They are asked to pick the map that best respects their
“order of attractiveness”. The green box indicates the map picked
by one of the participants.

annotate them in 5 sessions (500 images each). Each anno-
tation session lasts under an hour on average. After all the
annotations, participants were rewarded with a £25 Amazon
gift voucher for their time. The annotation result is shown
in Fig. 3 in the main paper. It shows that human judgement
of saliency rank (decreasing attractiveness) correlates very
well to the maps generated by human attention shift.

1.3. Dataset Analysis

Our dataset is adapted from MS-COCO [5] and SALI-
CON [3], and thus share similar characteristics (Sec. 5 in
the main paper). All existing popular datasets (ECSSD,
DUTS-OMRON, PASCAL-S, HKU-IS, DUTS) target bi-
nary salient object detection while ours focuses on salient
object ranking. Our dataset contains more complex im-
ages and is larger in size. Note that all other datasets do not
include individual object labels, making them ill-suited for
our task.

We report that the average number of objects per im-
age in our dataset is around 11 (maximum of 68). The
“person” object category occurs the most throughout the
dataset. However, many images contain crowd of people
with small individual annotations, causing the total count
to be 4-16 times greater than other categories. Similarly,
“person” objects receive the most instances of ground-truth
saliency which aligns to previous observations that humans
usually attract attention [4]. This is shown in Fig. 2, which
provides the distribution of ground-truth salient instances of
each object category in our dataset. Fig. 3 shows the aver-
age rank of each object category based on instances, given
ground-truth saliency. From the figure we can see that large
objects (e.g., “train”, “airplane”) with fewer instances per
image and some animal categories (e.g., “cat”, “dog”, “ele-
phant”) have a larger rank average score than a “person”
object. We also find object categories relating to appliances

Figure 2: Distribution of ground-truth salient instances of all ob-
ject categories in each data split of our dataset.

(e.g., “refrigerator”, “microwave”) have quite high scores,
which mainly come from indoor scenes with no other ob-
ject(s) of interest.

2. Implementation Details

Pre-processing and Training: In the main paper, we re-
port our network results based on the training from a pre-
processing strategy. Our pre-processing step outputs fea-
tures from the backbone (Sec. 4.2, main paper) to save
computation and training time. Consideration of this strat-
egy also stemmed from the issue that our earlier network
designs cannot fit into the memory of a single GPU card
(NVIDIA GTX 1080 Ti 11GB) for training.

Our pre-processing strategy first generates object pro-
posals for each image. We take the top M object propos-
als, whose probability scores are larger than 0.5. We chose
M = 30, as it covers all objects appearing in an image for
majority of our dataset. Next, we generate the correspond-
ing object features and segmentation output for each object
proposal. During the pre-processing step, we also gener-
ate the “P5” pyramid features from the backbone network,
which we later use in the Selective Attention Module (Sec.
4.3, main paper). Finally, we train the rest of our network
for saliency ranking using these pre-generated features as
input.

Inference: In our current implementation, the object pro-
posals come from the backbone network pre-trained for bi-
nary saliency prediction only. That is, it does not consider
multiple saliency ranks. As a consequence, we do not use
the confidence score of the object proposals (from binary
classification) during our inference stage for rank predic-
tion. Instead, we choose to use the softmax rank classifi-
cation probabilities as our initial scores for distinct ranking
(the last step in Sec. 4.5 in the main paper).



Figure 3: Average rank of each object category in the proposed dataset.

Figure 4: Example scenes containing “sports ball” object category. Images from our dataset (Top row), GT Ranks (Middle row), our
network rank prediction (Last row).

3. Saliency Ranking on Different Contexts

Our study is the first deep network to model human at-
tention shift. Our main focus is bottom-up and top-down
inference that aligns closely to human visual processing. In
the design, we have not fully explored scene context (we
have only used spatial context and global image features),
yet the results is promising. Exploring scene context will be
an interesting future work.

Our network learns to reason the saliency rank of indi-
vidual object features against the global features of an im-
age scene. Such learning can also capture relationships be-
tween separate image features and corresponding saliency
ranked objects. Fig. 4 showcases examples of different im-
age scenes containing “sports ball”. Our network is able to
learn relationship between the object category and various
image scenes, while correctly rank the object categories.

4. Comparison with State-of-the-Arts

As noted by the caption of Table 1 in the main paper, we
directly evaluate RSDNet [1] on our dataset using their pre-
trained weights, for two reasons: First, the idea and model
of RSDNet are based on the agreement of twelve observers
on binary saliency prediction. Our training dataset, how-
ever, is based on attention shift order of the most five salient
objects. Their training strategy does not fit well to the nature
of our dataset. Second, practically, when we try to train their

Table 1: Quantitative comparison with S4Net for the task of salient
instance detection on our dataset. Note that we do not include
comparison with RSDNet, BASNet, CPD-R and SCRN since they
are unable to perform this task.

Method mAPr@0.5 ↑ mAPr@0.7 ↑
S4Net [2] 16.9 % 10.7 %
Ours 57.4 % 48.3 %

model on their dataset, or to adapt and train their model on
our dataset (using their available source code), both cases
do not converge. We thus use their model with pre-trained
weights to evaluate on our dataset.

For S4Net [2], we modify the prediction layer in the
salient object detection and segmentation heads from binary
prediction (salient, background) to multiple saliency rank
prediction (5 ranks, 1 background), and train on our dataset.
We find that S4Net mostly predicts the same saliency rank
(rank 1) during inference with standard classification. We
apply the same inference method involved in our network
(Sec. 4.5 in the main paper) to S4Net. This allows S4Net
to produce distinct saliency rank predictions and enable fair
comparison with our network.

Here we provide more qualitative comparisons between
RSDNet [1], S4Net [2], BASNet [6], CPD-R [7], SCRN [8]
and ours in Fig. 5 and 6.
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Figure 5: Further qualitative comparisons between RSDNet [1], S4Net [2], BASNet [6], CPD-R [7], SCRN [8] and our network. The top
row (GT) in each of the 3 sub-figures shows 4 sets of examples. In each of the examples, we show respectively the image, the ground
truth saliency map and the ground truth ranks. Each row of the 6 networks shows their respective results: (i) saliency prediction map, (ii)
saliency prediction map with predicted rank of ground-truth object segments colourised on top, and (iii) corresponding map that contains
only the predicted rank of ground-truth objects. Specifically, in each example, (i) provides a direct comparison of the predicted saliency
maps (greyscales) against the ground-truth saliency map. The column (ii) visualises the false saliency and rank prediction from each
methods. The column (iii) compares predicted saliency rank of ground-truth objects and their corresponding ground-truth rank. We use
(iii) ground-truth object segmentation to obtain their predicted saliency ranks for numerical evaluation.

5. Further Comparison with S4Net

Like S4Net [2], our network is able to generate individ-
ual segmentation for each salient object instance. We fur-
ther compare our network to S4Net on the task of salient
instance detection. We do not include comparison with RS-
DNet [1], BASNet [6], CPD-R [7] and SCRN [8] as they
are unable to produce output of salient object instances. We

use the mean Average Precision (mAPr, r = 0.5/0.7) to
measure the performance similarly as in [2]. Table 1 re-
ports the results between S4Net and our network for salient
instance detection on our dataset. The table shows that our
network outperforms S4Net by a large margin. The results
reveal that S4Net is not able to handle the primary task
of salient object ranking, which is the focus of this paper.
S4Net predicts very few salient objects when compared to
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Figure 6: Further qualitative comparisons between RSDNet [1], S4Net [2], BASNet [6], CPD-R [7], SCRN [8] and ours (Fig. 5 cont.).

our network (see Fig. 5 and 6) and misses the prediction
of saliency towards corresponding ground-truth objects in
over one third of the test set (indicated by #Images used in
Table 1 in the main paper).
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