
A. Supplementary Material for KeyTrack
A.1. Test Set Scores

We submitted to the PoseTrack 2017 test set twice. We
first achieved a 60.1 MOTA score, but then decreased the
TOKS box expansion value from ↵ “ 1.4 to ↵ “ 1.25.
This increased our our score to 61.2. ↵ “ 1.25 is also the
value we used on the 2018 Validation Set.

A.2. Additional Qualitative Results

We provide additional qualitative results of our model on
the PoseTrack 18 Validation Set in Figure 10.

A.3. Keypoint Postprocessing

The post-processing performed when evaluating AP and
MOTA is different. Specifically, we use a different keypoint
confidence threshold, where keypoints above the threshold
are kept and keypoints below the threshold are ignored. The
confidence metric used is the per-keypoint confidence score
from the pose estimator. The threshold optimal for MOTA
is much higher than AP. Interestingly, ID Switches are not
much worse, indicating the majority of the error stems from
the estimation step. Results are in Table 4.

Confidence Threshold AP % IDSW MOTA

0.05 81.6 1.0 42.0
0.35 79.6 0.9 63.3
0.5 76.7 0.9 66.5
0.57 74.3 0.8 66.6
0.6 72.8 0.9 66.0

Table 4. Effect of postprocessing on the 2018 Validation Set.

A.4. Implementation Details

Training To fine-tune the detector, separate models are
fine-tuned on PoseTrack 17 and 18 datasets for 1 epoch with
a learning rate of 1.9 ˆ 10´3 and batch size of 4. Training
was conducted on 4 NVIDIA GTX Titans. To fine tune the
pose estimator, originally trained on COCO, we follow [47].

During tracking training, we use a linear warm up sched-
ule for learning rate, warming up to 1ˆ 10´4, for a fraction
of 0.01 of total training steps, then linearly decay to 0 over
25 epochs. Batch size is 32. Cross entropy loss is used to
train the model. Since there are more non-matching poses
than matching poses in a pair of given frames, we use Py-
torch’s WeightedRandomSampler to sample from matching
and non-matching classes equally, accounting for class im-
balance. When assigning a track ID to a pose, we choose
the maximum match score from the previous 4 timesteps.
All models are trained on 1 NVIDIA GTX 1080Ti GPU.

Inference The detector processes images with a batch
size of 1. The detections are fed to the pose estimator,
which processes all of the bounding box detections for a
frame in a single batch. Flip testing is used. Temporal
OKS is computed for every frame with an OKS threshold
of 0.35. The bounding box scores are ignored when com-
puting OKS. Bounding boxes are thresholded at a minimum
confidence score of 0.2, and keypoints are thresholded at a
minimum confidence score of 0.1. We found decreasing the
bounding box confidence and keypoint thresholds to 0 did
not improve AP, but hurt runtime. Boxes are enlarged by
factor ↵ “ 1.25. All code is written in Python, and we use
1 NVIDIA GTX 1080ti. As done by [47, 21], we train on
the PoseTrack 2017 Train and Validation sets before evalu-
ating on the heldout Test Set.

Details of the Tracking Pipeline Analysis The ablation
studies from 5.1 were conducted using the predicted key-
points and predicted boxes with our best model on the Pose-
Track 2018 Validation Set. Match accuracy, the metric we
use in Table 3 is similar to 1´%IDSW , i.e. the IDs which
are not switched. The methods would be in the same order
if measured with IDSW.

A.5. Architecture Details
Detector and Estimator We use the implementation of
the COCO-pretrained Hybrid Task Cascade Network [10]
with Deformable Convolutions and Multi Scale predictions
from [11]. For our pose estimator, we use the most accurate
model from [47], HRNetW48-384x288.

Transformer Matching Network We use an effective
image resolution of 24 ˆ 18 for a total of 432 unique Posi-
tion tokens. There are |K| “ 15 Type tokens and 4 Segment
Tokens.

Each pair of poses has 2|K| tokens total. These are
projected to embeddings with dimension r2|K|, Hs, where
H “ 128 is the transformer hidden size (this is also the
transformer intermediate size). The sum of each token’s
embedding is input to our Transformer Matching Network.
The network’s backbone consists of 4 transformers in se-
ries, each with 4 attention heads. We use a probability of
0.1 for dropout, applying it throughout our Network as [15].
Weights are initialized from a standard normal, N p0, 0.02q.
The output is pooled, then fed to a binary classification
layer, rH, 2s. The network has a total of 0.41M parameters,
we adapt code from [49]. A.5 gives details of our trans-
former, which follows the original architecture. The inputs
are the hidden states, rB, 2|K|, Hs, where B is batch size,
and an attention mask, rB, 1, 1, 2|K|s. The extra dimensions
in the attention mask are for broadcasting in matrix multi-
plication. The FLOP counts for our Transformer Matching
Network are in Table 6.

Figure 9. Two videos which highlight the limitations of our model. In the top example, the individuals are very near each other and are
moving in a synchronized fashion. Thus, our model incorrectly ids people in the middle of the group. In the bottom row, a man walks in
front of boys on trampolines. They are occluded for a few frames and are given incorrect ids after he walks away from them. Also, some
of the individuals in the back are given incorrect ids because they are small, in close proximity, and moving in similar fashions.

element 1 op element 2 output

hidden states r32, 30, 128s x WQ r128, 128s Q r32, 30, 128s
hidden states r32, 30, 128s x WK r128, 128s K r32, 30, 128s
hidden states r32, 30, 128s x WV r128, 128s V r32, 30, 128s

Q r32, 30, 128s resize - Qmultir32, 4, 30, 32s
K r32, 30, 128s resize - Kmultir32, 4, 32, 30s
V r32, 30, 128s resize - Vmultir32, 4, 30, 32s

Ascores r32, 4, 30, 30s + attention mask A1
scores

r32, 4, 30, 30s
A1

scores
r32, 4, 30, 30s softmax - Aprobs r32, 4, 30, 30s

Aprobs r32, 4, 30, 30s dropout - Aprobs r32, 4, 30, 30s
Aprobs r32, 4, 30, 30s x Vmultir32, 4, 30, 32s context r32, 4, 30, 32s
context r32, 4, 30, 32s resize - context r32, 30, 128s

Table 5. A look inside our transformer. 32 is the batch size. x
is matrix multiplication., Q,K, V are the query, key, and value,
respectively. W˚ are the learned weights corresponding to the
query, key, or value. “multi” refers to a multi-headed representa-
tion. Ascores are the raw attention scores, and Aprobs is the distri-
bution of attention scores resulting from the softmax operation.

Network Module Parameters (M) FLOPS (M)

Embeddings 0.06 0.35
Transformers (x4) 0.40 5.84
Pooler 0.02 0.015
Classifier 0.01 0.02
Transformer Matching Network 0.41 6.20
GCN 0.1 1.30
Optical Flow 38.7 52.7 ˆ 103

Table 6. FLOP and parameter comparison of our Transformer
Matching Network to alternative tracking methods. The first four
rows give details of each component of our network. (M) indicates
millions. Its computational cost is similar to a GCN, only amount-
ing to 1ms increase on the GPU, and much more efficient than
Optical Flow. As we showed earlier, our method is more accurate
than both alternatives.

We also give details about the other tracking methods
we compare to in Table 4. Though our method is slightly
more computationally expensive than the GCN, it is much
more accurate. Both Transformers and the GCN are far less

computationally expensive than Optical Flow.

CNN Pose Entailment Networks The input is projected
to 64 channels in the first layer of the CNN. All convolu-
tions use kernel size 3 and padding 1. BatchNorm is applied
after each convolutional layer. The input is downsampled
via a maxpooling operation with a stride of 2. The number
of filters are doubled after downsampling. Two Linear lay-
ers complete the network. The hidden size is dependent on
the resolution of the input image. The second layer outputs
a binary classification, corresponding to the likelihood of
the poses being a match or non-match.

The number of convolutions layers is equal to log2pnq ´
1, where n is the long edge of the input image. The batch
size, learning rate, and number of training epochs are the
same as those we used for the transformers. We experi-
mented with other learning rates, but did not see improve-
ment.

The scheme to color the “visual tokens” is accomplished
by fixing the Hue and Saturation, then adjusting the Value
via a linear interpolation from 0 ´ 100% in increments of
100
|K| .

A.6. Limitations
Our approach can struggle to track people who are in

close proximity and are moving in similar patterns. This is
similar to how CNNs struggle with people in close proxim-
ity who look visually similar, such as the case where they
are wearing the same uniform. Another challenging case for
our model is people who are hidden for long periods of time.
It is difficult to re-identify them without visual features, and
we would need to take longer video clips into context than
we currently do to successfully re-identify these individu-
als. We visualize both these failure modes in Figure 9.

Figure 10. Additional qualitative results of our model succeeding in scenarios despite occlusions, unconventional poses, and varied lighting
conditions. Every 4th frame is sampled so more extensive motion can be shown. Solid circles represent predicted keypoints. Hollow squares
represent keypoint predictions that are not used due to low confidence.

