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Here we provide the additional details and results that are
left in the main text to this supplementary material. Firstly,
we give detailed descriptions of the probe data used in this
paper. Then more details about the proposed method and
additional experimental results of both task transferability
and layer transferability are provided.

1. Probe Data
Here we provide more details about the probe datasets

used for task transferability on taskonomy models and layer
selection in pre-trained VGG-19.

1.1. Task Transferability on Taskonomy Models

Following [4], we adopt three types of probe data to
investigate the transferability of tasks involved in taskon-
omy [5].

1.1.1 Taskonomy Data

On taskonomy data [5], we construct the probe data by se-
lecting images from the validation data of the TINY parti-
tion. In the validation set of TINY partition, images are ran-
domly collected from 5 different buildings. We randomly
select 200 images from each of these 5 buildings, construct-
ing a probe dataset consisting of 1,000 images.

1.1.2 Indoor Scene

Indoor Scene [3] is a dataset used for indoor scene recog-
nition. The original database contains 67 indoor categories,
and a total of 15,620 images. We randomly select 15 im-
ages from each of these 67 categories, constructing a probe
dataset consisting of 1,005 images.

1.1.3 COCO

The COCO [1] dataset is designed for multiple purposes
including detection and captioning. On this dataset, we ran-
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domly select 1,000 images from the 2014 Val dataset to con-
struct the probe dataset for evaluating the proposed method.

The styles of images in these three datasets vary a lot.
The textures of images in taskonomy are in general simple,
but those in Indoor Scene and COCO are relatively com-
plex.

1.2. Layer Selection in Pre-trained VGG-19

The experiments of layer selection are conducted on the
Syn2Real-C [2] data. For both the source and the target
data in Syn2Real-C, the data is split into three groups used
for training (70%), validation (10%) and test (20%). Both
the two PR-DNNs, DNN-ImageNet and DNN-Source, will
be transferred to the target data in Syn2Real-C. Thus we
randomly sample 200 images from the validation set from
the target data in Syn2Real-C as the probe data.

2. Task Transferability

In this section, to give a more comprehensive view of the
proposed method, we provide more details and experimen-
tal results of the proposed method.

2.1. Algorithms Involved in DEPARA

Here we give the computation processes of
ascending rank in Eq. (1) and descending rank in
Eq. (5). The detailed computation processes are summa-
rized in Algorithm 1 and 2, respectively.

2.2. Precision-Recall Curves

In Figure S1, we depict the Precision-Recall Curves
(PRCs) of the proposed method using probe data from
Indoor Scene and COCO. We can see that using probe
data from Indoor Scene and COCO, the proposed method
still produces task transferability highly similar to that of
taskonomy (the task similarity trees are depicted in Fig-
ure S2). Furthermore, utilizing both the nodes and the edges
simultaneously (DEPARA) outperforms the utilizing only



Algorithm 1: Algorithm of ascending rank in
Eq. (1)

Input: The knowledge pool Ω, the source
knowledge F (i), the target task tj , the data
distribution Pj of tj , and the labeled target
data D

Output: The transferability of F (i) to task tj :
TF(i)→tj

1 Embedding D into all the embedding spaces in Ω,
getting the set of embeddings F (k)(D) for each k;

2 For each k, producing the hypothesis hF(k)(D) on
the embeddings F (k)(D);

3 Computing the standard expected risk Rk of
hF(k)(D) on Pj for each k;

4 Sorting the standard expected risks
{R1,R2, ...,RN} in the ascending order;

5 Setting TF(i)→tj to be the order of Ri;

Algorithm 2: Algorithm of descending rank in
Eq. (5)

Input: The knowledge pool Ω, the source
knowledge F i

e, the target knowledge F j
e ,

and the probe data Dp

Output: The transferability of F i
e to task tj :

TFi
e→tj

1 For each Fk
e in Ω and the target knowledge F j

e ,
computing the DEPARA Gk on Dp (Note that the
source knowledge F i

e is already in Ω);
2 For each k, computing the similarity sk between Gk

and Gj ;
3 Sorting the similarity {s1, s2, ..., sN} in the

descending order;
4 Setting TFi

e→tj to be the order of si;

the nodes (DEPARA-V) or edges (DEPARA-E) by a consid-
erable margin, which again verifies the essentiality of both
the nodes and the edges for task transferability. These re-
sults are consistent with that of using taskonomy data as the
probe data. Except for these findings, another interesting
observation is that DEPARA-V outperforms DEPARA-E on
COCO, but behaving worse on Indoor Scene. It indicates
that for different probe data, the relative importance of the
nodes and the edges is changing for quantifying the knowl-
edge transferability. Thus the trade-off hyper-parameter λ
in Eq. (5) needs to be tuned accordingly.

2.3. Task Similar Trees

Figure S2 depicts the task similarity trees produced by
taskonomy [5] and the proposed method using taskonomy
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(a) COCO.
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(b) Indoor Scene.

Figure S1. Precision-Recall Curves (PRC) on probe data from In-
door Scene and COCO.
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(a) (Zamir et al. 2018).
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(b) Taskonomy Data.
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(c) COCO.
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(d) Indoor Scene.

Figure S2. Task similarity trees of taskonomy [5] and the proposed
method using taskonomy data, COCO and Indoor Scene as the
probe data.

data, COCO and Indoor Scene as the probe data. The task
similarity tree is acquired from agglomerative clustering of
the tasks based on their transferring-out behavior [5]. The
tree shows how tasks would be hierarchically positioned
with respect to each other when measured based on provid-
ing information for solving other tasks; the closer two tasks,
the more similar their role in transferring to other tasks.
3D, 2D, geometric, and semantic tasks clustered together in
taskonomy. It can be seen that with different probe data, the
proposed method produces task similarity trees alike that
of taskonomy. These results demonstrate that the proposed
method is insensitive the probe data to some degree, which
relieves us of our burden for collecting the probe data.

3. Layer Transferability
Here we provide more results and analyses of the pro-

posed method for tackling the layer selection problem in
transfer learning.
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(a) DNN-ImageNet.
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(b) DNN-Source.

Figure S3. Test accuracy curves of different layers when trans-
ferred to the target data in 0.1-T mode.

3.1. Test Accuracy Curves

In Figure S3, we depict the test accuracy curves of differ-
ent layers when transferred to the target data. Here the ex-
periments are conducted in 0.1-T mode. The results shown
in Figure S3 further demonstrate the layers selected by the
proposed method are more suitable for being transferred
to the target than other layers. For example, for the PR-
DNN DNN-ImageNet, the proposed method picks out the
#15, #16, #17, #18 layers for being transferred. In Fig-
ure S3, it can be seen that these layers converge much faster
than other layers when re-trained for the target task. The
final accuracy also tends to be higher than that of other lay-
ers. Both these two characteristics are desirable for being
transferred to the target task. Furthermore, layers in DNN-
ImageNet produce more smooth test accuracy curves than
DNN-Source, which indicates that the embedding space
learned by DNN-ImageNet are more easily adapted to the
target task. The embedding space learned by DNN-Source,
however, is quite different in topological structure (as in-
dicated by the low similarity of edges in DEPARA) from
that learned on the target data. When adapted to the target
data, it will be largely destroyed and rebuilt for the target,
thus the test accuracy curves oscillate and the transferring
performance is poor.

3.2. More Observations from Table 2

In the main body of this paper, we provide four main
observations from the results shown in Table 2. Here we
give some other interesting discoveries from Table 2 for bet-
ter understanding the results: (1) Intuitively, shallow layers
potentially encode richer information then deep layers. It
can be observed from the results of DNN-Source, where the
similarity of V decreases as the layers go deeper. However,
for DNN-ImageNet, as the layers go deeper, the similarity
of V firstly increases then decreases. The reason underling
this phenomenon may be that DNN-Source learns from the
source data decision patterns which are unsuitable for han-
dling the target data. Thus as the layers in DNN-Source go
deeper, the learned embedding space becomes less suitable.

However, DNN-ImageNet learns the embedding space that
is very easily adapted to the target data. As the layers in
DNN-ImageNet go deeper, the learned knowledge is more
suitable to the target task, thus the similarity of V firstly
increases. However, as the layers go excessively deeper,
the learned knowledge becomes too specific to the classi-
fication task of ImageNet. Thus the similarity of V starts
to decrease after the #12 layer. (2) The main assump-
tion in the proposed method is that higher similarity be-
tween DEPARAS indicates higher transferability between
the learned deep knowledge. This assumption can be veri-
fied from Table 2 where the similarity values are monoton-
ically correlated with the transferring performance. Specif-
ically, the Spearman’s rand-order correlation between the
similarity and the transferring performance is 0.875 (in 0.1-
T mode) and 0.832 (in 0.01-T mode) for DNN-ImageNet
and 0.954 (in 0.1-T mode) and 0.989 (in 0.01-T mode) for
DNN-Source, respectively. These high correlation coeffi-
cients imply that the similarity derived from the proposed
DEPARA is a good indicator for layer selection in transfer
learning.
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