
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination
Supplementary Materials

Pratul P. Srinivasan*1 Ben Mildenhall*1 Matthew Tancik1

Jonathan T. Barron2 Richard Tucker2 Noah Snavely2

1UC Berkeley, 2Google Research

The following sections include details about our in-
cluded supplementary video, additional implementation de-
tails for our method, additional qualitative results, and im-
plementation details for baseline methods.

1. Supplementary Video
We encourage readers to view our included supplemen-

tary video for a brief overview of our method and qualitative
comparisons between our method and baselines that show-
case our method’s spatial coherence by inserting specular
virtual objects that move along smooth paths.

2. Multiscale Lighting Volume Details
Our multiscale lighting volume consists of 5 scales of

64× 64× 64 RGBα volumes. As illustrated in Figure 3 in
the main paper, each scale’s volume has half the side length
of the previous scale’s volume.

3. Illumination Rendering Details
For training, we implement the volume rendering proce-

dure described in the main paper by sampling each volume
in our multiscale lighting representation on a set of con-
centric spheres around the target environment map location
with trilinear interpolation. We use 128 spheres per scale,
sampled evenly in radius between the closest and furthest
voxels from the target location. Then, we alpha-composite
these spheres (128×5 = 640 total spheres) from outermost
to innermost to render the environment map at that location.

For fast relighting performance at test time, we imple-
ment the volume rendering as standard ray tracing using
CUDA. We intersect each camera ray with each virtual ob-
ject, and then trace rays through the volume from that in-
tersection location to compute the incident illumination to
correctly shade that pixel. This means that the illumina-
tion we use for relighting virtual objects varies spatially
both between different objects as well as across the geom-
etry of each object. This effect is quite difficult to simulate

* Authors contributed equally to this work.

with prior lighting estimation work such as Neural Illumi-
nation [7], since this would require running a deep network
tens of thousands of times to predict an environment map
for each camera ray intersecting the virtual object. In con-
trast, our method only requires one pass of network infer-
ence to predict a multiscale volumetric lighting estimation,
and full spatially-varying lighting across inserted objects is
then handled by ray tracing through our volumes.

Figure 1 illustrates how our spatially-varying lighting
across the surfaces of inserted objects adds realism. In the
top image, we render all points on each object’s surface us-
ing a single environment map predicted by our method at
the object’s centroid. In the bottom image, we render each
point by ray tracing through our predicted lighting volume,
so each point is effectively illuminated by a different envi-
ronment map. We can see that the inserted virtual objects
have a more realistic appearance in the bottom image. For
example, the armadillo’s legs and the Buddha statue’s base
correctly reflect the floor while the Buddha statue’s face cor-
rectly reflects the windows instead of the black counter.

4. Network Architectures
MPI prediction network (Table 1) Our MPI prediction
network is a 3D encoder-decoder CNN with skip connec-
tions. We use residual blocks [3] with layer normaliza-
tion [1] for all layers, strided convolutions for downsam-
pling within the encoder, and nearest-neighbor upsampling
within the decoder. This network outputs a 3D array of
RGBα values and a scalar 3D array of blending weights
between 0 and 1.

We compute a “background” image as the average RGB
over all depth planes in the output array, and use the “back-
ground + blending weights” MPI parameterization [8],
where each MPI plane’s RGB colors are defined as a convex
combination of the input reference image and the predicted
“background” image, using the predicted blending weights.

Volume completion network (Table 1) We use the same
3D encoder-decoder CNN architecture detailed above for



(a) Single environment map per object

(b) Fully spatially varying lighting

Figure 1: Visualization of our method’s ability to realisti-
cally render spatially-varying lighting across each object’s
surface. In (a), we use a single environment map predicted
by our method at the object’s centroid to illuminate the en-
tire object. In (b), we illuminate each point on each object’s
surface by tracing rays through our predicted volume, so
each point is effectively illuminated by a different environ-
ment map. This results in more realistic lighting effects, as
can be seen in the reflection of the floor in the armadillo’s
legs and the Buddha’s statue’s base and the reflection of the
window in the Buddha statue’s face. This difference is less
pronounced in smaller objects such as the teapot.

all 5 scales of our volume completion network, with sepa-
rate weights per scale. At each scale, the network predicts
an RGBα volume as well as a scalar volume of blending
weights between 0 and 1. We parameterize each scale’s out-
put as a convex combination of the input resampled volume
at that scale and the network’s output RGBα volume, using
the network’s predicted blending weights.

Discriminator network (Table 2) We use a 2D CNN
PatchGAN [4] architecture with spectral normalization [6].

Encoder
1 3× 3× 3 conv, 8 features H ×W ×D × 8
2 3× 3× 3 conv, 16 features, stride 2 H/2×W/2×D/2× 16

3-4 (3× 3× 3 conv, 16 features) ×2, residual H/2×W/2×D/2× 16
5 3× 3× 3 conv, 32 features, stride 2 H/4×W/4×D/4× 32

6-7 (3× 3× 3 conv, 32 features) ×2, residual H/4×W/4×D/4× 32
8 3× 3× 3 conv, 64 features, stride 2 H/8×W/8×D/8× 64

9-10 (3× 3× 3 conv, 32 features) ×2, residual H/8×W/8×D/8× 64
11 3× 3× 3 conv, 128 features, stride 2 H/16×W/16×D/16× 128

12-13 (3× 3× 3 conv, 32 features) ×2, residual H/16×W/16×D/16× 128
Decoder

14 2× nearest neighbor upsample H/8×W/8×D/8× 128
15 concatenate 14 and 10 H/8×W/8×D/8× (128 + 64)
16 3× 3× 3 conv, 64 features H/8×W/8×D/8× 64

17-18 (3× 3× 3 conv, 64 features) ×2, residual H/8×W/8×D/8× 64
19 2× nearest neighbor upsample H/4×W/4×D/4× 64
20 concatenate 19 and 7 H/4×W/4×D/4× (64 + 32)
21 3× 3× 3 conv, 32 features H/4×W/4×D/4× 32

22-23 (3× 3× 3 conv, 32 features) ×2, residual H/4×W/4×D/4× 32
24 2× nearest neighbor upsample H/2×W/2×D/2× 32
25 concatenate 24 and 4 H/2×W/2×D/2× (32 + 16)
26 3× 3× 3 conv, 16 features H/2×W/2×D/2× 16

27-28 (3× 3× 3 conv, 16 features) ×2, residual H/2×W/2×D/2× 16
29 2× nearest neighbor upsample H ×W ×D × 16
30 concatenate 29 and 1 H ×W ×D × (32 + 16)
26 3× 3× 3 conv, 16 features H ×W ×D × 16
27 3× 3× 3 conv, 5 features (sigmoid) H ×W ×D × 5

Table 1: 3D CNN network architecture used for MPI
prediction and volume completion networks. All con-
volutional layers use a ReLu activation, except for the final
layer which uses a sigmoid activation.

Encoder
1 4× 4 conv, 64 features, stride 2 H/2×W/2×D/2× 64
2 4× 4 conv, 128 features, stride 2 H/4×W/4×D/4× 128
3 4× 4 conv, 256 features, stride 2 H/8×W/8×D/8× 256
4 4× 4 conv, 512 features, stride 2 H/16×W/16×D/16× 512
5 4× 4 conv, 1 feature H/16×W/16×D/16× 1

Table 2: 2D CNN discriminator network architecture.
All convolutional layers use a Leaky ReLu activation with
α = 0.2, except for the final layer.

5. Baseline Method Details
DeepLight [5] and Garon et al. [2] output HDR environ-

ment maps with unknown scales, since camera exposure is
a free parameter. For fair comparisons, we scale their en-
vironment maps so that their average radiance matches the
average radiance of the ground-truth environment maps for
our quantitative and qualitative results when using the Inte-
riorNet dataset. There is no ground-truth environment map
for our real photograph results, so we scale their predicted
environment map so that their average radiance matches the
average radiance of the reference image.

Neural Illumination [7] does not have an available im-
plementation, so we implement and train a generous base-
line version of their method. Their published method trains
a 2D CNN network to predict per-pixel geometry from a
single input image, uses this geometry to warp input im-
age pixels into the target environment map, trains another
2D CNN to complete the unobserved areas of this environ-
ment map, and trains a final 2D CNN to convert this en-



Ref. Image DeepLight [5] Garon et al. [2] Neural Illum. [7] Ours

Figure 2: Qualitative comparison of real images from the RealEstate10K dataset [8] with relit inserted virtual objects and
corresponding environment maps. DeepLight [5] only estimates a single environment map for the entire scene, so virtual
objects at different locations do not realistically reflect scene content. Garon et al. [2] estimate a low-dimensional lighting
representation at each pixel, so their lighting does not realistically vary across 3D locations along the same camera ray.
Furthermore, their low-dimensional representation does not contain sufficient high frequency detail for rendering specular
objects, so inserted objects have a more diffuse appearance. Neural Illumination [7] has trouble correctly preserving scene
content colors from the input image. Additionally, their method separately predicts unobserved content for the environment
map at each 3D location so their predicted lighting is not as spatially-coherent. Our results contain more plausible spatially-
coherent reflections, and we can see that the colors of virtual objects in our results are more consistent with the scene content
in the original image.

vironment map to HDR. To enable a generous comparison
with our method, which uses a stereo pair of images as in-
put, we remove the first CNN from the Neural Illumination
method, and instead use the ground-truth depth to repro-
ject input image pixels into the target environment map for
all quantitative and qualitative comparisons on our Interior-
Net test set (we use our method’s estimated MPI geometry
for qualitative results on the RealEstate dataset where no
ground truth is available). Additionally, since we assume
InteriorNet renderings are captured with a known invertible
tone-mapping function, we omit Neural Illumination’s LDR
to HDR conversion network and instead just apply the exact
inverse tone-mapping function to their completed LDR en-
vironment maps. For a fair comparison with our method’s
results, we use the same architecture as Table 1 for the en-
vironment map completion network, but with 2D kernels
instead of 3D, and the same discriminator as Table 2. We
train this generous Neural Illumination baseline on the same
InteriorNet training dataset that we use to train our method.

6. Additional Results
Figure 2 contains additional qualitative results for spec-

ular virtual objects relit with baseline methods and our al-
gorithm. We can see that our results are more spatially-
coherent and contain realistic reflections of scene content.



References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.

Layer normalization. arXiv:1607.06450, 2016. 1
[2] Mathieu Garon, Kalyan Sunkavalli, Sunil Hadap, Nathan

Carr, and Jean-Francois Lalonde. Fast spatially-varying in-
door lighting estimation. CVPR, 2019. 2, 3

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning. CVPR, 2016. 1

[4] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-image translation with conditional adversar-
ial networks. CVPR, 2017. 2

[5] Chloe LeGendre, Wan-Chun Ma, Graham Fyffe, John Flynn,
Laurent Charbonnel, Jay Busch, and Paul Debevec. Deep-
light: Learning illumination for unconstrained mobile mixed
reality. CVPR, 2019. 2, 3

[6] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative adver-
sarial networks. ICLR, 2018. 2

[7] Shuran Song and Thomas Funkhouser. Neural illumination:
Lighting prediction for indoor environments. CVPR, 2019. 1,
2, 3

[8] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view syn-
thesis using multiplane images. SIGGRAPH, 2018. 1, 3


