
GrappaNet: Combining Parallel Imaging with Deep Learning for Multi-Coil
MRI Reconstruction

A. Dithering as post-processing
The GrappaNet model was trained to optimize a linear

combination of Structural Similarity [5] and L1 loss between
the reconstruction and the ground truth image. SSIM and L1
loss are imperfect proxies for radiologists’ visual perception;
optimizing SSIM, L1 loss, or a linear combination of them
can produce unnaturally smooth reconstructions even when
preserving diagnostic content. We can enhance the perceived
sharpness of the images by adding low levels of noise, that
is, by dithering. As established by [3], filtered noise (“Perlin
noise”) is a good model for the synthesis of natural textures
— natural-looking textures include some noise. Quoting [4],
“the preservation of film grain noise can also help enhance
the subjective perception of sharpness in images, known as
acutance in photography, although it degrades the signal-to-
noise ratio. The intentional inclusion of noise in processing
digital audio, image, and video data is called dither.”

To avoid obscuring dark areas of the reconstruction by
adding too much noise, we adapt the level of noise to the
brightness of the image around each pixel. Specifically, we
first normalize the image we wish to dither by dividing each
pixel by the maximum pixel intensity in the image; then
we blur the normalized image with a median filter taking
medians over patches 11 pixels high by 11 pixel wide, then
take the square root of the value at each pixel of the blurred
image, and finally add to the image being dithered centered
Gaussian noise of standard deviation σ times the associated
blurred pixel. We set σ = 0.025 for non-fat-suppressed im-
ages and σ = 0.05 for fat-suppressed images (which have a
worse native SNR).

Examples of GrappaNet reconstructions with and without
noise are shown in figures 1 and 2. The dithered images look
more natural, especially the PDFS images with 8× under-
sampling. The metrics reported in the main paper do not
include this added noise.

B. Training with random masks to counter ad-
versarial examples

Compressed sensing is the reconstruction of images to a
resolution beyond what reconstruction via classical signal
processing would permit for the amount of measurements

actually made. In MRI, the measurements are taken in k-
space, and the classical signal processing involves an inverse
Fourier transform. Compressed sensing reconstructs to the
same resolution as if using an inverse Fourier transform on
more measurements than actually taken; compressed sensing
must be nonlinear to succeed. When taking measurements
in k-space at fixed locations, it is relatively straightforward
to construct objects whose measurements at these fixed loca-
tions will result in reconstructions from compressed sensing
that are horribly wrong: simply alter arbitrarily the objects
in the parts of k-space in between those locations in k-space
that are actually measured. Whether such so-called “adver-
sarial” examples of objects being measured are worrisome
depends on where the actual measurements are made and
(especially) on the algorithm used for reconstruction.

If the algorithm used for reconstruction is trained on
a set of examples with measurements always taken at the
same locations in k-space, then the reconstruction is likely
to be blind to properties of objects that depend on parts of
k-space in between those actually measured. The adversarial
examples can then hide horrible problems in between the
parts of k-space that are actually measured; the algorithm
for reconstruction trained on only fixed locations in k-space
will have no hope of learning how the unmeasured parts
of k-space contribute to the correct reconstruction. On the
contrary, if the algorithm used for reconstruction is trained
on examples with measurements taken at random locations in
k-space (which is particularly advantageous if each example
gets measured at several different random realizations of
the sampling pattern), and the random locations cover all k-
space (over enough random realizations), then the algorithm
is likely to learn about all parts of k-space during training
(here, “all” k-space refers to the sampling pattern used for
conventional reconstruction via the inverse Fourier transform
at full resolution). When taking measurements at random
locations in k-space, the algorithm for reconstruction will
probably detect at least a piece of any adversarial attempt to
hide horrible artifacts in parts of k-space, and will learn how
all relevant parts of k-space affect the correct reconstruction.

Therefore, a machine-learned algorithm for reconstruc-
tion should train on examples measured at randomized lo-
cations in k-space in order to avoid some adversarial ex-
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Figure 1. Example reconstructions from the GrappaNet model with 4× under-sampling with and without dithering. The top row shows PD
images without fat suppression and the bottom row shows PDFS images.

amples, such as those constructed by [1]. Moreover, the
measurements for the validation and testing sets must also
be randomized, in the following subtle sense: the locations
of the measurements in k-space must be stochastically in-
dependent of the object being imaged. Ideally the object

will be deterministic and the locations of the measurements
in k-space will be drawn randomly independently of the
object. Thus, the object being imaged should not be con-
structed conditional on knowing the locations in k-space of
the measurements being taken; an object in physical reality
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Figure 2. Example reconstructions from the GrappaNet model with 8× under-sampling with and without dithering. The top row shows PD
images without fat suppression and the bottom row shows PDFS images.

has no way of knowing where the measurements are being
taken. The adversarial examples of [1] construct objects that
depend on where the measurements are being taken, and
so are inapplicable to the setting of randomized locations
for the measurements. In practice, the same random loca-

tions in k-space can be used for multiple objects, provided
that the objects being imaged cannot alter themselves based
on knowing where the measurements are being taken, and
provided that the training of any machine-learned reconstruc-
tion considers many different random locations in k-space



(preferably covering all k-space over enough random real-
izations).

To summarize:

1. Measurements should be at randomized locations in
k-space during training of machine-learned algorithms
for reconstruction, such that the random locations cover
all k-space (over enough random realizations), where
“all” refers to the sampling pattern used for conventional
reconstruction at full resolution via the inverse Fourier
transform.

2. Measuring each object in the training set at multiple dif-
ferent random samples in k-space is ideal, constituting
a kind of data augmentation that regularizes the recon-
struction and improves generalization and robustness
to adversarial examples.

3. The object being imaged in reality during validation
and testing should be deterministic, with the random
locations in k-space where measurements are taken
being stochastically independent of the object.

4. When taking measurements at randomized locations
in k-space, the object should not alter itself based on
where measurements are made; adversarial examples
are irrelevant when they are conditional on knowing the
locations of the randomized measurements.

5. The same random locations in k-space can be used
across the objects in the validation and testing sets (yet
these locations must vary during training!).

Fortuitously, algorithms for reconstruction that obey the
above conditions are also ideal for use in estimating errors
via the bootstrap, as described by [2].

Regarding technologically reasonable sampling patterns,
MRI works well taking measurements along the following
lines:

1. radial lines in k-space, with the lines at random angles

2. parallel lines in k-space, with the lines at random offsets

3. equispaced parallel lines in k-space, with the overall
offset chosen at random

In all cases, “random” means the same angle or offset for dif-
ferent objects being imaged in validation and testing sets, but
with the angles or offsets varying at random during training
and in the bootstrap or jackknife error estimation. So-called
parallel imaging usually supplements the above measure-
ments with some additional measurements of mainly low
frequencies for autocalibration of sensitivity maps or of con-
volutional kernels for fusing contributions from multiple
receiver coils, as discussed by [1] and others. The extra set
of autocalibration measurements is merely a bonus, not re-
quiring the same randomization as the other measurements.

C. Example Reconstructions
Additional example reconstructions picked at random

from the validation set are shown in figures 3-6. In each
case, the images on the left are the ground truths and the
images on the right are the dithered reconstructions.
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Figure 3. Proton Density with 4× under-sampling.
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Figure 4. Proton Density with Fat Suppression with 4× under-sampling.
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Figure 5. Proton Density with 8× under-sampling.
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Figure 6. Proton Density with Fat Suppression with 8× under-sampling.


