ACNe: Attentive Context Normalization
for Robust Permutation-Equivariant Learning

(Supplementary Material)

Weiwei Sun! Wei Jiang!
'University of Victoria

{weiweisun, jiangwei, kyi}@uvic.ca

A. Visualizing attention — Fig. 5

We visualize the weights for wide-baseline stereo, along
with the “ground truth” labels on the matches. Since the
labels are obtained by thresholding the epipolar distance,
computed from the ground truth poses, they contain a few
false positives. This figure shows that ACN learns to focus
on inliers by emulating a robust iterative optimization. As
our system is trained by Fundamental matrix supervision, it
was also able to learn to ignore these false positives.

Methods Attn. on feature map Our method

L G L+G L G L4G
Weighted-8pt 410 260 408 531 .593 .597
Weighted-8pt (ReLU+-Tanh) .427 347 .369 —_ = —

Eduard Trulls?
2Google Research, Zurich

Kwang Moo Yi!
3Google Research, Toronto
{trulls, taglia}@google.com

Andrea Tagliasacchi®

Matches: ACN

Table 7. Applying attention to the feature maps — We compare
our method (right) to applying attention directly to the feature maps
(left). We report mAP at a 20° error threshold on our validation
set — the Saint Peter’s Square scene. Applying attention on the
normalization performs significantly better than applying attention
to the feature maps.

B. Attention on feature maps — Table 7

We show that applying attention to the normalization of
the feature maps (our method) outperforms the more com-
monly used strategy of applying attention directly to the
feature maps [49, 15]. Table 7 extends our ablation study
from Table 5, demonstrating that our method outperforms
this alternative approach by 29% relative.

It is important to note that introducing global attention to
the feature maps resulted in unstable training. To avoid gra-
dient explosion we reduced the learning rate to one-tenth of
the value we typically used. Nonetheless, gradients exploded
after 224k iterations. We suspect that attention on feature
maps causes the feature maps to become artificially small, re-
sulting in numerical instability. In all cases, the performance

11

h"' /u. -.3":'-:4.*“--, :;,.'a.]
t . l s a0’
é’“l’. ?‘ &‘.’"‘-;. P 4o .
Ne 1. ? o g. «® '“ ; ?C#
¢ 1)

Feature maps (t-SNE): for ACN Feature maps (t-SNE): for GT

Figure 5. Attention in wide-baseline stereo. An illustration of
ACNe on an example image pair. The top row shows the matches,
and the bottom row shows a representation of the feature maps
obtained via t-SNE. The left column displays ACN weights, color-
coded by magnitude (highest in red, lowest in blue), and the right
column the ground truth match labels (inliers in red, outliers in
blue), computed by thresholding the symmetric epipolar distance
(Sec. 4.3). We draw matches with negative labels with thinner lines.

is slightly worse than what CNe [55] gives in Table 5 (.414)
showing that attention on feature maps is actually harmful.
We also tried modifying the output of the network — i.e.,
the weights used by the eight-point algorithm — to use the
ReLU+Tanh configuration from [55], which we report in

the bottom row of Table 7. This variant trained in a stable
way, but provided sub-par results that are always lower than
using local attention only on the normalization. Note that
with ReLU+Tanh and local attention only, attention on the
feature maps does help — by 1% relative — but the increase
in performance is very small compared to what our method
can achieve.

C. Essential matrix estimation — Table 8

Several learned methods [55, 58] focus on estimating the
Essential matrix instead of the Fundamental matrix. The
latter is more broadly applicable as it does not need a-priori
knowledge about the intrinsics of the camera — hence it is
closer to Computer Vision “in the wild”.

We now demonstrate that our approach outperforms these
methods for Essential matrix estimation as well. We report
the results in Table 8, using the authors’ original imple-
mentations for this comparison. We also report the perfor-
mance of robust estimators such as RANSAC and MAGSAC.
For RANSAC, we rely on findEssentialMat from
OpenCV. We found that it is beneficial to use both local
and global attention when applying *SAC to the Essential
matrix problem unlike the Fundamental matrix problem, and
we simply threshold w with an optimal threshold (i.e., 10~7)
found on the validation set, and feed the surviving corre-
spondences to *SAC. We observe that RANSAC improves
the performance for ACNe in the outdoor experiments. This
is due to the reduced complexity of the problem, which as-
sumes known camera intrinsics. For MAGSAC, we carefully
implement the 5-point algorithm into their framework for
estimating the Essential matrix. While it achieves compet-
itive results, MAGSAC is still much worse than RANSAC
because it is originally geared for Fundamental matrix esti-
mation.

D. Number of ACNs within ARB — Table 9

We perform an ablation study to evaluate the impact of
the number of ACN blocks within each ARB. Due to the
increasing computation overhead and GPU memory limita-
tions, we only report the results of ACNe up to three ACN
blocks for each ARB; see Table 9. We expect that more ACN
blocks would further improve the accuracy, at the cost of
an increase in memory/computation. We use 2 blocks, as it
provides a good compromise between computational require-
ments and performance, and also the additional advantage
that this makes our results directly comparable to CNe [55].

E. Number of parameters — Table 10

Even though ACNe significantly outperforms CNe, the
number of parameters added to CNe is only 6K, which is only
~1.5% more. The advantages are more prominent when
we compare against OANet, which introduces a significant

Method Outdoors Indoors
RANSAC .671 .365
MAGSAC 415 204
CNe (weighted-8pt) 515 332
CNe+RANSAC 750 404
CNE+MAGSAC 514 .259
DFE (weighted-8pt) 573 352
DFE+RANSAC 121 .384
DFE+MAGSAC 532 265
OANet (weighted-8pt) .648 401
OANEet+RANSAC 176 419
OANet+MAGSAC 547 271
ACNe (weighted-8pt) 706 429
ACNe+RANSAC 780 418
ACNe+MAGSAC 415 187
Table 8. Essential matrix estimation — mAP at a 20° error

threshold when we train the models to estimate the Essential matrix
instead of the Fundamental matrix, for the indoors and outdoors
experiments.

#ACN per ARB 1 2 3
Weighted-8pt 527 .602 .621

Table 9. Ablation on #ACN - Performance as we vary the number
of ACNs within each ARB — mAP at 20° on our validation set —
Saint Peter’s Square.

Methods OANet CNe

2347K 394K

ACNe
400K

of Parameters

Table 10. Number of parameters — Our method introduces a
small overhead compared to CNe, and is much smaller than OANet.

increase in the number of parameters in the network, while
providing worse results.

F. Timing of *SAC Methods — Table 11

We observed that ACNe and CNe share a similar run-
time, and are both more efficient than OANet, which uses
a deep permutation-equivariant network that performs an
iterative refinement of an initial guess. Additionally, due
to the GPU efficiency and low computational complexity,
the runtime of learned methods is negligible compared with
traditional robust estimators (*SAC). Furthermore, learning-
based methods are capable of facilitating the task of a robust
estimator by proactively rejecting outliers. For instance,
we found that ACNe makes RANSAC approximately 12x
times and MAGSAC approximately 5Xx faster, while also
significantly improving overall performance; see Table 4.

Methods Network Robust estimator
RANSAC — 194
MAGSAC — 2752
CNe 15 —
CNe + RANSAC 15 19
CNe + MAGSAC 15 523
OANet 18 —
OANet + RANSAC 18 13
OANet + MAGSAC 18 546
ACNe 14 —
ACNe + RANSAC 14 16
ACNe + MAGSAC 14 594

Table 11. Average elapsed time — Runtime, in milliseconds, for
individual steps of each method. We execute the forward pass of
our networks on a GTX 1080 Ti GPU and the robust estimator on a
Intel(R) Core(TM) 17-8700 CPU. We disable multi-threading for the
CPU timings since not all robust estimator implementations support
multi-threading. Networks are implemented with TensorFlow 1.8.0,
except for OANet, which uses PyTorch 1.2.0.

0.008 q

0.006

0.004 4

0.002 4

0.0 0.2 0.4 0.6 0.8 1.0 12 14

Figure 6. Output weight computed by the 2-layer MLP for
a given residual input — Computed for the residual-to-weight
variant of ACNe.

Method CNe IRLS
{5 error .0038 .0024

ACNe
0008

Table 12. Performance of learnt JRLS — Comparison with CNe
and ACNe on the line fitting problem, under an outlier ratio of 0.7.

G. Learnt IRLS variant — Fig. 6, Table 12

Our method is inspired by iteratively re-weighted least
squares (IRLS), and not a direct translation. We learn a
representations-to-weights mapping, and not a residuals-to-

weights mapping as in traditional IRLS; see (4). To ensure
the validity of our approach, we compare to a variant of our

method that is more faithful to IRLS. In each (unrolled) iter-
ation, we compute residuals by solving for the final objective
(e.g. the optimal line parameters) with the current weights.
Then, we represent (.) ~! in (4) with a 2-layer MLP that is
shared between iterations. In other words, the MLP serves
as a learnt kernel, which is traditionally hand-picked in the
IRLS literature. We evaluate performance on the line fitting
example due to its simplicity.

As shown in Table 12, the residuals-to-weights variant
performs significantly worse than ACNe. This is not surpris-
ing, given that the IRLS variant is more restricted in what
in can do, compared to ACNe. However, it is interesting to
note that it still performs better than classical CNe. One very
interesting aspect is that the learnt 1)(.)~! has the typical
monotonically decreasing property of typical (M-Estimator)
kernel functions; see Fig. 6.

