
A. Appendix

In the following we provide implementation details and
show qualitative results. The code will be open sourced
upon publication.

A.1. Architecture

We closely follow [34] to design our Multi-Path (MP)
encoder and decoders.

In our T-LESS experiments the encoder is symmetric to
each of the decoders. The encoder consists of four convo-
lutional layers with kernel size = 5, stride=2, ReLU acti-
vation and {128, 256, 512, 512} filters respectively. It fol-
lows, a shared fully connected layer with W0 ∈ R32768x128.
The resulting codes are propagated to the corresponding
decoders via j ∈ 1, .., n fully connected layers Wj ∈
R128x32768. After reshaping, each decoder has four con-
secutive convolutional layers with kernel size = 5, stride=1,
ReLU activation and {512, 512, 256, 128} filters. Nearest
neighbor upsampling is performed after each convolutional
layer. The final reconstruction output is preceded by a sig-
moid activation.

We initially expected that an encoder with up to hun-
dred corresponding decoders would require a much larger
architecture to be able to adequately encode the views of all
training objects. Therefore, we first adopted the [4], with
a Resnet101 backbone and a spatial pyramid pooling (SPP)
layer. Although, the total training loss can be reduced with
such a network, the downstream performance on encoding
object poses of both, trained and untrained objects, does not
increase compared to a more shallow encoder/decoder with
4-5 plain convolutional layers as used by [34]. As usual,
multiple explanations are plausible. Shallow features could
contain all necessary information for class-agnostic pose es-
timation. The lost symmetry in the encoder-decoder archi-
tecture could make an invertible compression more difficult
to learn. A deeper encoder could simply overfit more to
synthetic and generalize less to real data. As architecture
search and explanation is not our main goal here, we sim-
ply stick with the more efficient shallow CNN.

A.2. Training Details

It is possible to train our architecture with up to 80 de-
coders on a single GPU. In this case, the encoder receives a
joint batch size of 80, while each decoder has a batch size =
1. For single-GPU training on T-LESS with 18 decoders, we
use a batch size = 4. We train for 300.000 iterations which
takes about 48 hours on a single GPU. Multiple GPUs al-
most linearly speed up training due to the inherent paral-
lelism in the architecture. Therefore, the batch and the de-
coders are divided into equal parts on all available GPUs.
For the ModelNet experiments where we trained on 80 ob-
ject instances, we used 4 GPUs with a total encoder batch

Encoder

Decodern

Decoder2

Decoder1

Figure 5: Our multi-path training process. Left: Joint aug-
mented input batch with uniformly sampled SO(3) views of
n object instances; Right: Individual reconstruction targets
xxxj for each decoder.

size of 240 and decoder batch size of 4. Higher decoder
batch sizes also stabilize the training.

We use Xavier initialization and the Adam [24] opti-
mizer with a learning rate of 10−4 × bdec, with bdec = de-
coder batch size. In our experiments we did not have to
assign individual learning rates to the encoder and decoder
but this could potentially accelerate the training.

A.3. Synthetic Data Generation

For each instance we render 8000 object views sampled
randomly from SO(3) at a constant distance of 700mm. The
resulting images are quadratically cropped and resized to
128× 128× 3.

A.4. Augmentation Parameters

All geometric and color input augmentations besides the
random lighting are applied online during training at uni-
form random strength (see Table 5). As background images
we use Pascal VOC2012 [11]. One could argue that random
background images during training are redundant where we
use MaskRCNN. Training without backgrounds works, but
in our experiments it does help with the generalization from
synthetic to real data and is also beneficial when the MaskR-
CNN does not output perfect masks.

Table 5: Augmentation Parameters; Scale and trans-
lation is in relation to image shape

color 50% chance light (random position)
(30% per channel) & geometric

add U(−0.1, 0.1) ambient 0.4
contrast U(0.4, 2.3) diffuse U(0.7, 0.9)
multiply U(0.6, 1.4) specular U(0.2, 0.4)

invert scale U(0.8, 1.2)
gaussian blur σ ∼ U(0.0, 1.2) translation U(−0.15, 0.15)



Figure 6: Left: MP-Encoder trained on T-LESS objects 1-
18, and tested on a metallic, industrial object; Right: ICP-
refined result

A.5. ICP Refinement

Optionally, the estimate is refined on depth data using a
point-to-plane Iterative Closest Point (ICP) approach with
adaptive thresholding of correspondences based on [5, 46].
The refinement is first applied in direction of the vector
pointing from camera to the object where most of the RGB-
based pose estimation errors stem from and then on the full
6D pose.

A.6. Results on metallic parts

We briefly tested the MP-Encoder trained on T-LESS ob-
jects on metallic objects from industry (Fig. 6).

A.7. Full T-LESS results

Table 3 shows the full T-LESS results on each object
tested on all scene views of the Primesense test set. Fig-
ure 7 show qualitative results with and without refinement
on different T-LESS test scenes. Results on objects some-
times differ because the AAE submission uses RetinaNet
(0.73mAP@0.5) and the MP-Encoder uses MaskRCNN
(0.68mAP@0.5) because it does not learn to distinguish ob-
ject and background (see Table 2).

A.8. Runtime

The MaskRCNN with ResNet50 takes ∼ 150ms for all
instances in a scene on a modern GPU. Lighter architectures
can be chosen for simpler problems. All resulting image
crops can be batched together such that the inference of the
MP-Encoder is parallelized. For a single instance the infer-
ence takes ∼ 5ms, nearest neighbor search in the codebook
takes 1−2ms and the projective distance estimation is neg-
ligible. While our RGB-based pipeline runs at high speed
and makes our approach applicable for mobile applications,
the depth-based ICP refinement takes in average 0.6s per
target and is thus suitable for robotic manipulation tasks.



Table 6: Evaluation of the full 6D Object Detection pipeline with MaskRCNN + Multi-Path Encoder + optional
ICP. We report the mean VSD recall following the SIXD Challenge [18] on the T-LESS Primesense test set.

Template matching PPF based Learning-based

object Hodan-15 Vidal-18 Drost-10 Drost-10-edge Kehl-16 OURS Brachmann-16 Sundermeyer-18 OURS
Depth Depth +ICP Depth Depth RGB-D + ICP RGB + ICP RGB-D RGB

1 66 43 34 53 7 73.61 8 9.48 5.56
2 67 46 46 44 10 66.40 10 13.24 10.22
3 72 68 63 61 18 87.24 21 12.78 14.74
4 72 65 63 67 24 82.91 4 6.66 6.23
5 61 69 68 71 23 86.16 46 36.19 37.53
6 60 71 64 73 10 92.79 19 20.64 30.36
7 52 76 54 75 0 80.83 52 17.41 14.62
8 61 76 48 89 2 81.32 22 21.72 10.73
9 86 92 59 92 11 85.15 12 39.98 19.43
10 72 69 54 72 17 82.31 7 13.37 32.75
11 56 68 51 64 5 72.60 3 7.78 20.34
12 55 84 69 81 1 68.80 3 9.54 29.53
13 54 55 43 53 0 53.37 0 4.56 12.41
14 21 47 45 46 9 50.54 0 5.36 21.30
15 59 54 53 55 12 45.25 0 27.11 20.82
16 81 85 80 85 56 82.32 5 22.04 33.20
17 81 82 79 88 52 72.27 3 66.33 39.88
18 79 79 68 78 22 80.60 54 14.91 14.16
19 59 57 53 55 35 48.17 38 23.03 9.24
20 27 43 35 47 5 25.74 1 5.35 1.72
21 57 62 60 55 26 47.53 39 19.82 11.48
22 50 69 61 56 27 50.27 19 20.25 8.30
23 74 85 81 84 71 46.99 61 19.15 2.39
24 59 66 57 59 36 78.20 1 4.54 8.66
25 47 43 28 47 28 50.00 16 19.07 22.52
26 72 58 51 69 51 64.61 27 12.92 30.12
27 45 62 32 61 34 73.09 17 22.37 23.61
28 73 69 60 80 54 86.14 13 24.00 27.42
29 74 69 81 84 86 77.66 6 27.66 40.68
30 85 85 71 89 69 92.96 5 30.53 56.08

Average 63.18 66.51 56.81 67.5 24.6 69.53 17.84 19.26 20.53

Time (s) 13.5 4.7 2.3 21.5 1.8 0.8 4.4 0.1 0.2



Figure 7: Qualitative 6D Object Detection results on T-LESS Primesense scenes. Only 18 of 30 objects are used
to train the Multi-Path encoder. Left: Predictions of the RGB-based pipeline; Middle-left: Error in depth [mm];
Middle-right: ICP-refined results; Right: Refined error in depth [mm]. Note that only one instance per class is
predicted following the BOP [21] rules.


