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1. Network architecture
This section describes our model in detail. We describe

the encoder-decoder network and discriminator in separate
sections below. We provide our code containing the imple-
mentation details 1 to assure full reproducibility of all the
presented results.

1.1. Autoencoder

Detailed scheme of the architecture is depicted in Fig-
ure 2. Each of the convolutional layers (in yellow) is fol-
lowed by Instance Normalization (IN) [6] and ReLU non-
linearity [3]. The TPFR module uses a variant of the Peer
Regularization Layer [5] with Euclidean distance metric, k-
NN with K = 5 nearest neighbours and dropout on the
attention weights of 0.2.

The generated latent code are 768 feature maps of size
(W/4) × (H/4), where W and H are the input width and
height respectively. First 256 feature maps is the content la-
tent representation, while the remaining 512 is for the style.
The style latent representation is further split into halves,
having first 256 feature maps left unchanged and the sec-
ond 256 feature maps are passed through the Global style
transform block producing feature maps of size 1 × 1 that
hold the global part of the style latent representation.

The last convolutional block of the decoder is equipped
with TanH nonlinearity and produces the reconstructed
RGB image.

The auxiliary decoder copies the architecture of the main
decoder, while omitting the Style transfer block (see Fig-
ure 2).

1.2. Discriminator

The discriminator architecture is shown in Figure 1. It
takes two RGB images concatenated over the channel di-
mension as input and produces a (W/4) × (H/4) map of

1Code is available at this link: http://nnaisense.com/conditional-style-
transfer

predictions. Our implementation uses LS-GAN and there-
fore there is no Sigmoid activation at the output

To stabilize the discriminator training, we add random
Gaussian noise to each input:

X = X +N(µ, σ), (1)

where N is a Gaussian distribution with mean µ = 0 and
standard deviation σ = 0.1.

Figure 1. Detailed architecture of discriminator.

2. Style transfer results
This section provides more qualitative results of our style

transfer approach that did not fit in the main text. Figure 3
are images generated with resolution 512× 512 and shows
the generalization of our approach to different styles and
ability of our approach to perform zero-shot style transfer.
In particular, we have collected some paintings from Sal-
vador Dali, Camille Pissarro, Henri Matisse, Katigawa Uta-
maro and Rembrandt.

In addition, images in Figure 4 were generated with res-
olution 256× 256 and show results of transfer taking a ran-
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Figure 2. Detailed architecture of autoencoder. The faded blue line in the background shows the flow of information through the model.

dom painting from the dosjoint test set of thirteen painting
styles that our model was trained with (Morisot, Munch, El
Greco, Kirchner, Pollock, Monet, Roerich, Picasso, Cez-
zane, Gaugin, Van Gogh, Peploe and Kandinsky).

3. Latent space structure
Our latent representation is split into two parts, (z)C and

(z)S , content and style respectively. Metric learning loss
is used on the style part in order to enforce a separation of
different modalities in the style latent space.

Lpos
zstyle

= f [(zi1)S − (zi2)S ] + f [(zt1)S − (zt2)S ]

Lneg
zstyle

= f [(zi1)S − (zt1)S ] + f [(zi2)S − (zt2)S ]

Lzstyle
= Lpos

zstyle
+max(0.0, µ− Lneg

zstyle
).

(2)

where (zi1)S , (zi2)S are style parts of latent representa-
tions of two different input images and (zt1)S , (zt2)S are
style parts of latent representations of two different targets
from the same target class. Parameter µ = 1 and it is the
margin we are enforcing on the separation of the positive
and negative scores.

3.1. Visualization in image space

Figure 5 visualizes the influence of the (z)C and (z)S
parts of the latent representation after decoding back into
the RGB image space. The TPFR module, which performs
the style transfer, is executed first. The resulting latent code
is then modified before feeding it to the decoder. Replacing
the (z)C with 0 gives us some rough representation of the
style with only approximate shapes. On the other hand, if
we replace (z)S with 0 and we keep (z)C , a rather flat rep-
resentation of the input with sharper is reconstructed. This
demonstrates that (z)C represents the content, while (z)S
holds most of the style-related information.

The fact that the latent code is passed through the TPFR
module first means that the two-stage feature recombination
is performed on the data we visualize. As a result, the de-
coded image [0, (z)S ] slightly resembles the structure of the
content image even if the (z)C is set to 0. Likewise, in case
of [(z)C , 0], the geometry of the objects is already slightly
modified based on the resulting style.

4. Computational overhead
Stylization of a single image of resolution 512× 512 us-

ing our method takes approximately 16ms on a single Titan-
V100 GPU. Execution of the TPFR block takes approxi-
mately 3ms, which is 18.75% of the whole runtime. Due
to memory requirements, our method can currently process
images of size up to 768× 768 pixels.

5. Quantitative evaluation
We are aware of the recent efforts bringing in quantities

such as deception score [4] or content and style distribu-
tion divergence [2]. However we decided not to use these
metrics as they are all based on a VGG network trained to
classify paintings. We argue that such evaluation may favor
models that have used VGG perceptual losses for training.
This concern is closely related to the work of [1].
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Figure 3. Qualitative evaluation of our method in zero-shot style transfer setting. The results clearly show that our method generalizes well
to previously unseen styles.
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Figure 4. Qualitative evaluation of our method using disjoint set of painting styles that were in the training set.



Figure 5. Visualization of information contained in content and style parts of the latent representation. Even if (z)C is set to 0, there is still
some rough resemblance of the structure of the Content image, because the TPFR module transforms a partially local style features based
on the content features.


