
StegaStamp: Invisible Hyperlinks in Physical Photographs
Supplement

1. StegaStamp Examples

See Figure 1 for additional examples of encoded images
and their residuals.

2. Supplemental Videos

https://youtu.be/E8OqgNDBGO0
This video provides an overview of StegaStamps with

example use cases and a condensed demonstration of
in-the-wild results.

https://youtu.be/jpbRhOH3D9Y
This video is a compilation of multiple in-the-wild cap-

tures. The first set of clips visualizes the output bounding
polygons along with the percentage of bits recovered cor-
rectly out of 100. We filter the output to only show detec-
tions where the bit accuracy is greater than 70 percent. We
note that the messages are regularly recovered with greater
than 90% accuracy when they are properly detected. The
second set of clips demonstrates the used of BCH error cor-
rection [2] to robustly detect and correct recovered codes.
The transmitted data consists of 56 message bits and 40
error correcting bits. When the accuracy is greater than
95% (fewer than 5 corrupted bits), the original 56-bit mes-
sage can be recovered exactly. If too many bits are cor-
rupted, the error correcting fails and we filter out the pro-
posal. The video represents successfully decoded StegaS-
tamps with green polygons. The decoded code is printed
above the polygon. Note that for most real world applica-
tions, it is only necessary to recover the code in a single
video frame to count it as successfully scanned.

3. Comparison Details

We compare our method to Baluja [1], HiDDeN [5], and
LFM [3]. Baluja was designed to hide images within im-
ages, which differs from our task of hiding a bitstring within
an image. To account for this, we convert our 100 bit mes-
sage into a 10 × 10 grid of ones and zeros that is upscaled
to the resolution of the cover image. During decoding we
round the model output to 0 and 1 and take the mode within
each upscaled block. As the original model was trained to

Mean Acc. ↑ bits/MP ↑
Baluja [1] 0.51 0.5

HiDDeN [5] 0.65 125
LFM [3] (printed) 0.61 287
LFM [3] (screen) 0.93 1109

O
ur

s

None 0.49 0.1
Pixelwise 0.51 0.2

Spatial 0.89 318
All 0.99 571

Table 1: Quantitative comparison of other methods and
our ablations. We show numbers in terms of fraction of
bits correctly recovered (mean accuracy) as well as bits-
per-megapixel (bits/MP). Higher is better for both met-
rics. The bits/MP metric normalizes the message length
and image sizes between different methods. All methods
except “LFM [3] (screen)” (cellphone camera/cellphone
screen) are reported on the cellphone camera/consumer
printer pipeline. We report LFM’s results in this additional
case because it was explicitly designed for screen/camera
transmission.

hide natural images, we retrain the model from scratch to
hide our bitstring grids.

HiDDeN was trained to hide 30 bit messages in 128 ×
128 pixel images. We observed a significant drop in accu-
racy when we trained a model to hide 100 bit messages in
400 pixel images, therefore we report accuracy results on
the 30 bit in 1282 image version.

LFM [3] was trained to encode 1024 bit messages as 4×4
pixel blocks in a 256× 256 pixel image. To encode our 100
bit message, we allocated 9 blocks for each message bit (we
therefore only use a 244 × 244 pixel subset of the image).
We average and round the 9 block predictions to recover the
message bit.

Each compared method encodes a different length mes-
sage into a different size image. However, if we treat the
mean bit recovery accuracy (first column in Table 1) as the
crossover probability p in a binary symmetric channel, we
can use information theory to calculate the channel capacity

1

https://youtu.be/E8OqgNDBGO0
https://youtu.be/jpbRhOH3D9Y


Original StegaStamp ResidualOriginal StegaStamp ResidualOriginal StegaStamp Residual

Figure 1: Additional examples of encoded images and their residuals.

(with unit “bits”):

C(p) = 1− (−p log2 p− (1− p) log2 1− p) (1)

If we divide C(p) by the number of pixels Npix in the orig-
inal image, we get the expected number of bits-per-pixel
transmitted by that method. Multiplying C(p)

Npix
by 106 yields

our bits-per-megapixel metric in the second column of Ta-
ble 1.

4. Architecture Details

Network architectures for our encoder (Table 3) and de-
coder (Table 4). Our detector uses the BiSeNet [4] architec-
ture.

PSNR ↑ SSIM ↑ LPIPS ↓
Baluja [1] 24.61 0.926 0.256
HiDDeN [5] (native) 31.07 0.940 0.070
HiDDeN [5] 24.55 0.775 0.202
LFM [3] 20.89 0.910 0.315
Ours 27.25 0.927 0.194

Table 2: Quantitative comparison of encoded image quality,
indicating how well hidden the message is. For HiDDeN [5]
we show both the metrics for the original lower resolution
(native 128× 128) and upsampling to our compared resolu-
tion of 400× 400 with bicubic interpolation. At full resolu-
tion, our method produces an encoded image most similar
to the original in all metrics.



Layer k s chns in out input

inputs 6 image + secret
conv1 3 1 6/32 1 1 inputs
conv2 3 2 32/32 1 2 conv1
conv3 3 2 32/64 2 4 conv2
conv4 3 2 64/128 4 8 conv3
conv5 3 2 128/256 8 16 conv4
up6 2 1 256/128 16 8 upsample(conv5)

conv6 3 1 256/128 8 8 conv4 + up6
up7 2 1 128/64 8 4 upsample(conv6)

conv7 3 1 128/64 4 4 conv3 + up7
up8 2 1 64/32 4 2 upsample(conv7)

conv8 3 1 64/32 2 2 conv2 + up8
up9 2 1 32/32 2 1 upsample(conv8)

conv9 3 1 70/32 1 1 conv1 + up9 + inputs
conv10 3 1 32/32 1 1 conv9
residual 1 1 32/3 1 1 conv10

Table 3: Our encoder network architecture. k is the kernel
size, s the stride, chns the number of input and output chan-
nels for each layer, in and out are the accumulated stride for
the input and output of each layer, input denotes the input
of each layer with + meaning concatenation and “upsam-
ple” performing 2× nearest neighbor upsampling. A ReLU
is applied after each layer except the last.

Layer k s chns in out input

conv1 3 2 3/32 1 2 image
conv2 3 2 32/64 2 4 conv1
conv3 3 2 64/128 4 8 conv2

fc0 320000 flatten(conv3)
fc1 320000/128 fc0
fc2 128/6 fc1

image warped 3/3 transf(image, fc2)

conv1 3 2 3/32 1 2 image warped
conv2 3 1 32/32 2 2 conv1
conv3 3 2 32/64 2 4 conv2
conv4 3 1 64/64 4 4 conv3
conv5 3 2 64/64 4 8 conv4
conv6 3 2 64/128 8 16 conv5
conv7 3 2 128/128 16 32 conv6

fc0 20000 flatten(conv7)
fc1 20000/512 fc0

secret 512/100 fc1

Table 4: Our decoder network architecture. We indicate
convolutional layers with the prefix “conv” and fully con-
nected layers with the prefix “fc.” The first half of the net-
work outputs an affine warp that is applied using a differ-
entiable spatial transformer layer (“transf”). The warped
result is fed into the second part of the network. A ReLU
is applied after each layer except the last layer before the
spatial transformer.

5. Code
The code and pretrained networks can be found at

https://github.com/tancik/StegaStamp.

References
[1] Shumeet Baluja. Hiding images in plain sight: Deep steganog-

raphy. In NeurIPS, 2017. 1, 2
[2] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a

class of error correcting binary group codes. Information and
Control, 1960. 1

[3] Eric Wengrowski and Kristin Dana. Light field messaging
with deep photographic steganography. In CVPR, 2019. 1, 2

[4] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,
Gang Yu, and Nong Sang. Bisenet: Bilateral segmentation
network for real-time semantic segmentation. In ECCV, 2018.
2

[5] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei.
Hidden: Hiding data with deep networks. In ECCV, 2018.
1, 2

https://github.com/tancik/StegaStamp

