
Supplementary Materials

8. Training Details

Dataset splits: The CUB and FGVC-Aircraft datasets contain class lists in a canonical order (found in classes.txt and
variants.txt respectively). Using this ordering we assign each class an id starting from 1 for CUB and 0 for FGVC respectively.
For each dataset, we split the categories by id into 50% base, 25% validation and 25% novel classes following the rule: if id
mod2=0, id 2 base, else if id mod4=1, id 2 validation, otherwise id 2 novel.

Hyper-parameters for CUB: For each model, we use the validation set to select the best hyper-parameters as well as
the best stopping iteration during the training process. Here we give all the hyper-parameters finally chosen for training on
CUB. All SGD optimizers use a default 0.9 momentum. PN models involve an additional hyper-parameter, the multiplier ↵
for Lpose (see formula 3 in section 4). This value is chosen as 100 for the 4-layer ConvNet and 200 for ResNet18.

For prototypical network based methods, we follow the same meta-training technique and batch sampling as [29] and set
each episode to 20-way 5-shot classification with 15 query images per class. The only exception is proto+FSL, for which we
follow the same setting as [29] and make each class in the episode consist of 5 refer shots for aggregating fore/background
vectors, 5 shots for training for 10 shots for testing. Here we define one epoch as one pass over the whole representation
set. The whole training process can then be divided into s stages, each stage containing e epochs, and the model is trained
with optimizer o and weight decay �, using an initial learning rate of lr and cut by multiplying a factor � after finishing each
stage. These hyper-parameters are shown in table 4. In addition, proto+bbN chooses ↵=10 and proto+MT choose the same
↵ value as proto+PN. During the whole training process, we evaluate the model on validation set every 20 epochs and select
the best one to make the final evaluation on test set.

For transfer learning based methods, following the same notation as above, we list in table 4 the hyper-parameters used
for pre-training on base classes with batch size 64. For the finetuning on novel classes, we finetune the new classifier for 40
epochs with Adam, using learning rate of 0.001 and batch size of 16.

For dynamic few-shot learning based methods, we list in table 4 the hyper-parameters used for the first training stage with
batch size 64. For the second training stage, in each batch, we random sample 16 fake novel and 4 base classes, each class
containing 20 images. We train the weight generator for 200 epochs with Adam, using learning rate 0.001. During the second
training stage, we evaluate the model on validation set every 20 epochs and select the best one to make the final evaluation
on test set.

4-layer ConvNet ResNet18

Model optimizer lr � epoch stage weight decay optimizer lr � epoch stage weight decay

transfer SGD 0.1 0.1 200 2 5e-4 SGD 0.1 0.1 100 2 1e-3
transfer+PN SGD 0.1 0.1 200 2 5e-4 SGD 0.1 0.1 100 2 1e-3
transfer+PN gt SGD 0.1 0.1 200 2 5e-4 SGD 0.1 0.1 100 2 1e-3
proto SGD 0.1 0.1 400 2 5e-4 SGD 0.1 0.1 300 2 1e-3
proto+MT SGD 0.1 0.1 600 2 1e-3 SGD 0.1 0.1 300 2 5e-3
proto+BP Adam 0.001 NA 800 1 0 Adam 0.001 NA 600 1 1e-3
proto+FSL SGD 0.01 0.1 400 2 5e-4 SGD 0.1 0.1 300 2 1e-3
proto+bbN SGD 0.01 0.1 400 2 5e-4 Adam 0.1 0.5 160 5 0
proto+uPN SGD 0.1 0.1 600 2 1e-3 SGD 0.1 0.1 200 2 5e-3
proto+PN SGD 0.1 0.1 600 2 1e-3 SGD 0.1 0.1 300 2 5e-3
proto+PN gt SGD 0.1 0.1 400 2 5e-4 SGD 0.1 0.1 300 2 5e-3
dynamic SGD 0.1 0.1 200 2 5e-4 SGD 0.1 0.1 100 2 1e-3
dynamic+PN SGD 0.1 0.1 100 2 5e-4 SGD 0.1 0.1 25 3 1e-3
dynamic+PN gt SGD 0.1 0.1 50 2 5e-4 SGD 0.1 0.1 25 3 1e-3

Table 4. The hyper-parameters selected for training on CUB.

Hyper-parameters for FGVC-Aircraft: Same as above, we set each meta-learning episode to 20-way 5-shot classifi-
cation with 15 query images per class. For each episode in PN models, in addition to calculating Lfewshot using predicted
pose heatmaps on FGVC, we also randomly sample 400 images from OID to calculate Lpose. In table 5 we give all hyper-
parameters chosen for training. All SGD optimizers use a default 0.9 momentum. For PN models, we select ↵=50. During
the whole training process, we evaluate the model on validation set every 40 epochs and select the best one to make the final
evaluation on test set.



4-layer ConvNet ResNet18

Model optimizer lr � epoch stage weight decay optimizer lr � epoch stage weight decay

proto SGD 0.1 0.1 500 2 1e-3 SGD 0.1 0.1 300 2 1e-3
proto+PN SGD 0.1 0.1 500 2 1e-3 SGD 0.1 0.1 300 2 5e-3

Table 5. The hyper-parameters selected for training on FGVC-Aircraft.

9. Numerical Experiment Results

In table 6, we list all the numerical results for prototypical and dynamic based methods in all three evaluation settings.

4-layer ConvNet ResNet18

Model 1-shot 5-shot all-shot 1-shot 5-shot all-shot

proto* 14.63 27.63 32.09 23.77 38.76 42.73
proto+MT 17.05 31.52 35.56 30.90 47.78 50.93
proto+BP 15.07 28.36 35.56 21.04 37.15 41.04
proto+FSL 18.01 34.44 39.60 26.04 42.35 47.43
proto+bbN 15.87 30.63 37.75 24.05 39.60 44.02
proto+uPN* 19.06 39.48 46.24 28.06 47.10 53.18
proto+PN* 19.69 43.05 49.56 34.90 58.64 63.44

proto+PN gt 22.14 51.62 59.55 31.04 57.16 62.63
dynamic 16.02 28.59 35.77 24.24 38.64 43.27
dynamic+PN 27.77 47.72 54.17 33.98 54.27 60.19

dynamic+PN gt 34.00 56.32 62.67 33.90 54.60 60.09
Table 6. All the numerical results on CUB. * indicates the results are averaged within 8 random trails for that model.

10. Training with Less Part Annotation

Here we give the training details for the experiments in section 5.4. The training settings and hyper-parameters are the
same as described in section 8. Similar to training on FGVC-Aircraft, we calculate Lfewshot over each batch using the
predicted pose heatmap. At the same time, we randomly sample a subset of images with part annotations from the same
20 classes to calculate Lpose. Here we define the batch size as the number of images with part annotation per class in each
iteration. The detailed numerical results are shown in table 7.

percentage of training images with part annotation

5 10 20 30 40 50 60 70 80 90 100
batch size 1 5 7 10 15 15 15 15 17 20 20
4-layer ConvNet 40.66 44.49 46.47 47.77 47.10 47.60 50.97 49.33 49.41 51.26 50.51
ResNet18 52.78 54.17 57.53 61.41 63.51 64.52 64.35 65.57 65.87 65.99 66.33

Table 7. For different percentages of training images with part annotation, we list the number of sampled part-annotated images per class
per batch, as well as the final all-shot evaluation accuracy on both shallow and deep network backbones.

11. More Examples for Nearest Neighbor

In figure 10, we show more visualization examples for the nearest neighbor experiment in section 6.1.



part 
location

query 
image

top5 images in the reference set 
with the nearest part representation 

beak

back

breast

back

tail

forehead

crown

nape

right
wing

throat

Figure 10. Images with the closest part vector to the query image, for a given part location. Image is labeled with a green box if it belongs
to the same class as the query image.


