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In this supplementary material, we first provide details about the architecture of the different modules of our network
GLU-Net in Section 1. We then explain the training procedure in more depth in Section 2. Finally, we present additional
qualitative results and more detailed quantitative experiments in Section 3.

1. Architecture details
In this section, we provide additional details about cyclic consistency as a post processing step of the global correlation.

We also give a detailed architectural description of the mapping and flow decoders, along with the refinement network. Lastly,
we explain in depth the iterative refinement allowed by our adaptive resolution strategy. In the following, a convolution layer
or block refers to the composition of a 2D-convolution followed by batch norm [8] and ReLU [14] (Conv-BN-ReLU).

1.1. Cyclic consistency post-processing step for improved global correlation

Since the quality of the correlation layer output is of primary importance for the flow estimation process, we introduce an
additional filtering step on the global cost volume to enforce the reciprocity constraint on matches. To encourage matched
features to be mutual nearest neighbours, we employ the soft mutual nearest neighbor filtering introduced by [17] and apply
it to post-process the global correlation.

The soft mutual nearest neighbor module filters a global correlation C ∈ RH×W×H×W into Ĉ ∈ RH×W×H×W such
that:

Ĉ(i, j, k, l) = rt(i, j, k, l) · rs(i, j, k, l) · C(i, j, k, l) (1)

with rs(i, j, k, l) and rt(i, j, k, l) the ratios of the score of the particular match C(i, j, k, l) with the best scores along each
pair of dimensions corresponding to images Is and It respectively. We present the formula for rs(i, j, k, l) below, the same
applies for rt(i, j, k, l).

rt(i, j, k, l) =
C(i, j, k, l)

maxab C(a, b, k, l)
(2)

This cyclic consistency post-processing step does not add any training weights.

1.2. Mapping decoder Mtop

In this sub-section, we give additional details of the mapping decoder Mtop for the global correlation layer (Eq. 4 and
Figure 3 in the paper). We compute a global correlation from the L2-normalized source and target features. The cost
volume is further post-processed by applying channel-wiseL2-normalisation followed by ReLU [14] to strongly down-weight
ambiguous matches [16]. Similar to DGC-Net [13], the resulting global correlation layer C is then fed into a correspondence
map decoder Mtop to estimate a 2D dense correspondence map m at the coarsest level L1 of the feature pyramid,

m1 = Mtop
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C
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The outputted mapping estimate is parameterized such that each predicted pixel location in the map belongs to the interval
[−1; 1] representing width and height normalized image coordinates. The correspondence map is then re-scaled to image
coordinates and converted to a displacement field.

w1(x) = m1(x)− x . (4)

The decoderMtop consists of 5 feed-forward convolutional blocks with a 3×3 spatial kernel. The number of feature channels
of each convolutional layers are respectively 128, 128, 96, 64, and 32. The final output of the mapping decoder is the result
of a linear 2D convolution, without any activation.

1.3. Flow decoder M

Here, we give additional details of the flow decoder M for the local correlation layers (Eq. 5 and Figure 3 in the paper).
At level l, the flow decoder M infers the residual flow ∆w̃l as,

∆w̃l = M
(
c
(
F lt , F̃

l
s ;R

)
,up(wl−1)

)
. (5)

Here, c is a local correlation volume with search radius R and F̃ ls (x) = F ls
(
x + up

(
wl−1) (x)

)
is the warped source

feature map Fs according to the upsampled flow from the previous pyramid level up
(
wl−1). The complete flow field is then

computed as w̃l = ∆w̃l + up
(
wl−1).

The flow decoder at level 4 (see Figure 3 of main paper) additionally takes an input de2(f l−1), obtained by applying a
transposed convolution layer de2 to the features f l−1 of the second last layer from the flow decoder M l−1. This additional
inputs was first introduced and utilized in PWC-Net [21] at every pyramid level. It enables the decoder of the current level
to obtain some information about the correlation at the previous level. In GLU-Net, this additional input to the flow decoder
only appears in H-Net since in L-Net, a global correlation and mapping decoder precede the flow decoder.

As for the flow decoder M , we employ a similar architecture to the one in PWC-Net [21]. It consists of 5 convolutional
layers with DenseNet connections [5]. The numbers of feature channels at each convolutional layers are respectively 128,
128, 96, 64, and 32, and the spatial kernel of each convolution is 3× 3. DenseNet connections are used since they have been
shown to lead to significant improvement in image classification [5] and optical flow estimation [21]. The final output of the
flow decoder is the result of a linear 2D convolution, without any activation.

1.4. Refinement network R

Here, we explain in more details the refinement network R (Figure 3 in the paper). The refinement network aims to refine
the pixel-level flow field w̃l, thus preventing erroneous flows from being amplified by up-sampling and passing to the next
pyramid level. Its architecture is the same than the context network employed in PWC-Net [21]. It is a feed-forward CNN
with 7 dilated convolutional layers [20], with varying dilation rates. Dilated convolutions enlarge the receptive field without
increasing the number of weights. From bottom to top, the dilation constants are 1, 2, 4, 8, 16, 1, and 1. The spatial kernel is
set to 3× 3 for all convolutional layers.

1.5. Details about Local-net, Global-Net and GLOCAL-Net

In Figure 2 of the main paper, we introduced Local-Net, Global-Net and GLOCAL-Net to investigate the differences
between architectures based on local correlation layers, a global correlation layer or a combination of the two, respectively.
All three networks are composed of three pyramid levels and use the same feature extractor backbone VGG-16 [2]. The
mapping and flow decoders have the same architecture as those used for GLU-Net and described above. For Global-Net, the
pyramid levels following the global correlation level employ concatenation of the target and warped source feature maps, as
suggested in DGC-Net [13]. They are fed to the flow estimation decoder along with the up-sampled flow from the previous
resolution. Finally, Global-Net and GLOCAL-Net are both restricted to a pre-determined input resolution HL ×WL due to
their global correlation at the coarsest pyramid level. On the other hand, Local-Net, which only relies on local correlations,
can take input images of any resolutions.

1.6. Iterative refinement

Here we provide more details about the iterative refinement procedure described in Section 3.3 in the paper. For high-
resolution images, the upscaling factor between the finest pyramid level, lL, of L-Net and the coarsest, lH , of H-Net (see
Figure 1) can be significant. Our adaptive resolution strategy allows additional refinement steps of the flow estimate between
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(a) GLU-Net without iterative refinement.

Lo
ca

l 
co

rr

G
lo

ba
l 

co
rrw

HL/8 HL/16HLxWL

Lo
ca

l 
co

rr

Lo
ca

l 
co

rr

H/4 H/8

Is

L-NetH-Net

lH lL

HxW

It
Lo

ca
l 

co
rr

H/16

Lo
ca

l 
co

rr

H/32

(b) GLU-Net with iterative refinement between L-Net and H-Net.

Figure 1. Schematic representation of iterative refinement. The features and weights of lH level of H-Net are iteratively applied at inter-
mediate resolutions between L-Net and H-Net.

those two levels during inference, thus improving the accuracy of the estimated flow, without training any additional weights.
This is performed by recursively applying the lH layer weights at intermediate resolutions obtained by down-sampling the
source and target feature maps from lH .

Particularly, we apply iterative refinement if the ratio between the resolutions of the lH and lL levels is larger than three.
We then iteratively perform refinements at intermediate resolutions, obtained by a reduction of factor 2 from lH in each step,
until the ratio between the resolution of the coarsest intermediate level and the resolution of lL is smaller than 2.

In more details, we construct a local correlation layer from the source and target feature maps of level lH down-sampled
to the desired intermediate resolution. We then apply the weights of the level lH decoder to the local correlation, therefore
obtaining an intermediate refinement of the flow field. This process is illustrated in Figure 1, where the gap between lL and
lH here allows for two additional flow field refinements.

2. Training details
Here, we provide additional details about the training procedure and the training dataset.

2.1. Loss

We freeze the weights of the feature extractor during training. Let θ denote the learnable parameters of the network. Let
wl
θ = (wx

l,wy
l) ∈ RHl×Wl×2 denote the flow field estimated by the network at the lth pyramid level. wl

GT refers to
the corresponding dense flow ground-truth, computed from the random warp. We employ the multi-scale training loss, first



introduced in FlowNet [4],

L(θ) =

L∑
l=L1

αl
∑
x

∥∥wl
θ(x)−wl

GT(x)
∥∥+ γ ‖θ‖ , (6)

where αl are the weights applied to each pyramid level and the second term of the loss regularizes the weights of the network.
We do not apply any mask during training, which means that occluded regions (that do not have visible matches) are included
in the training loss. Since the image pairs are related by synthetic transformations, these regions do have a correct ground-
truth flow value.

For our adaptive resolution strategy, we down-sample and scale the ground truth from original resolution H × W to
HL ×WL in order to obtain the ground truth flow fields for L-Net. Similarly to FlowNet [4] and PWC-Net [21], we down-
sample the ground truth from the base resolution to the different pyramid resolutions without further scaling, so as to obtain
the supervision signals at the different levels.

2.2. Dataset

To use the full potential of our GLU-Net, training should be performed on high-resolution images. We create the training
dataset following the procedure in DGC-Net [13], but enforcing the condition of high resolution. We use the same 40, 000
synthetic transformations (affine, thin-plate and homographies), but apply them to our higher resolution images collected
from the DPED [7], CityScapes [3] and ADE-20K [24] datasets. Indeed, DPED images are very large, however the DPED
training dataset is composed of only approximately 5000 sets of images taken by four different cameras. We use the images
from two cameras, resulting in around 10, 000 images. CityScapes additionally adds about 23, 000 images. We complement
with a random sample of ADE-20K images with a minimum resolution of 750× 750.

2.3. Implementation details

As a preprocessing step, the training images are mean-centered and normalized using mean and standard deviation of
ImageNet dataset [11]. For all local correlation layers, we employ a search radius R = 4. For the training of Global-
Net and GLOCAL-Net, which both have a pre-determined fixed input image resolution of (HL × WL = 256 × 256),
we use a batch size of 32 while we train LOCAL-Net, which can take any input image, with batches of size 16. We set
the initial learning rate to 10−2 and gradually decrease it during training. The weights in the training loss are set to be
α1 = 0.32, α2 = 0.08, α3 = 0.02.

Our final network GLU-Net is trained with a batch size of 16 and the learning rate initially equal to 10−4. The weights in
the training loss are set to be α1 = 0.32, α2 = 0.08, α3 = 0.02, α4 = 0.01. Our system is implemented using Pytorch [15]
and our networks are trained using Adam optimizer [10] with learning rate decay of 0.0004.

3. Detailed results
Here, we first provide additional details on the run-time computation in Section 3.1. Then, in Section 3.2, we evaluate

the influence of the training dataset on the evaluation results. We then present additional qualitative and more detailed
quantitative results on subsequently the geometric matching, the semantic matching and the optical flow tasks in respectively
Sections 3.3, 3.4 and 3.5. Finally, we expose additional ablation experiments in Section 3.6.

3.1. Run time

We compare the run time of our method with state-of-the-art approaches over the HP-240 images in Table 1. The timings
have been obtained on the same desktop with an NVIDIA GTX 1080 Ti GPU. The HP-240 images are of size 240 × 240,
which corresponds to the pre-determined input resolution of DGC-Net. For PWC-Net, LiteFlowNet and GLU-Net, the images
are resized to 256 × 256 before being passed through the networks. We do not consider this resizing in the estimated time.
They all output a flow at a quarter resolution the input image. We up-scale to the image resolution 240 × 240 with bilinear
interpolation. This up-scaling operation is included in the estimated time.

PWC-Net LiteFlowNet DGC-Net GLU-Net (Ours)

Run-time [ms] 38.51 45.10 138.30 38.10

Table 1. Run time of our methods compared to optical-flow competitors PWC-Net and LiteFlowNet as well as geometric matching com-
petitor DGC-Net, averaged over 295 image pairs of HP-240.



HP-240x240 HP KITTI-2012 KITTI-2015
AEPE PCK-1px [%] PCK-5px [%] AEPE PCK-1px [%] PCK-5px [%] AEPE-all F1-all [%] AEPE-all F1-all [%]

DGC-Net (tokyo) 9.07 50.01 77.40 33.26 12.00 58.06 8.50 32.38 14.97 50.98
DGC-Net† (DPED-CityScape-ADE) 9.12 43.09 79.35 33.47 9.19 56.02 7.96 34.35 14.33 50.35
GLU-Net (DPED-CityScape-ADE) 7.40 59.92 83.47 25.05 39.55 78.54 3.34 18.93 9.79 37.52

Table 2. Effect of the training dataset on the evaluation results of DGC-Net and comparison to GLU-Net. The training dataset is indicated
in parenthesis.

Our network GLU-Net obtains similar run time than PWC-Net and is three times faster than DGC-Net. This is due to the
fact that PWC-Net, LiteFlowNet and GLU-Net outputs a flow at a quarter image resolution whereas DGC-Net refines the
estimated flow field with two additional pyramid levels until the fixed resolution of 240× 240.

3.2. Training dataset

Since DGC-Net is our main competitor, for a fair comparison, we additionally trained DGC-Net on our training dataset
DPED-CityScape-ADE, using the training code provided by the authors, which resulted in DGC-Net†. In Table 2, we sum-
marize the results of DGC-Net trained on both DPED-CityScape-ADE or tokyo and evaluated on geometric matching datasets
HP-240 and HP as well as optical flow datasets KITTI-2012 and KITTI-2015. It seems that the training dataset in this case
only has a small effect. Since both datasets were created by applying the same synthetic transformations, this support the
fact that geometric transformation and displacement statistics are more important for generalization properties than image
content [12, 19, 22].

3.3. Geometric matching

We provide the detailed results on HP and ETH3D datasets, as well as extensive additional qualitative examples. We also
analyse the performance of our network with respect to rotation and scaling.

3.3.1 Results on HPatches dataset

Detailed results obtained by different models on the various view-points of the HP and HP-240 datasets are presented in
Table 3. It corresponds to Table 1 of the main paper, that only provides the average over all viewpoint IDs. Note that
increasing view-point IDs lead to increasing geometric transformations due to larger changes in viewpoint. We outperform
all other methods for each viewpoint ID on both low resolution (HP-240) and high-resolution images (HP). Particularly, our
network permits to gain a lot of accuracy (in the order of 3 to 4 times higher for PCK-1 on HP) as compared to DGC-Net.
Additional qualitative examples are shown in Figure 4.

We additionally present the PCK curves computed over the different viewpoints of HP, as a function of the relative
distance threshold. We do not set a pixel-level thresholds for the PCK curves since HP image pairs have different resolutions

HP-240 HP

I II III IV V all I II III IV V all
AEPE 6.99 16.78 19.13 25.27 28.89 19.41 36.69 102.17 113.58 154.97 186.82 118.85

LiteFlowNet PCK-1px [%] 50.06 28.93 25.87 23.22 13.72 28.36 34.86 12.95 10.35 6.93 4.47 13.91
PCK-5px [%] 82.14 59.62 56.92 51.04 38.59 57.66 63.99 32.88 28.99 18.52 13.85 31.64

AEPE 5.74 17.69 20.46 27.61 36.97 21.68 23.93 76.33 91.30 124.22 164.91 96.14
PWC-Net PCK-1px [%] 43.55 20.35 18.60 14.17 8.27 20.99 31.56 12.10 10.83 7.09 4.12 13.14

PCK-5px [%] 80.06 57.08 53.89 45.70 34.22 54.19 68.79 38.51 36.38 25.24 16.76 37.14

AEPE 1.74 5.88 9.07 12.14 16.50 9.07 5.71 20.48 34.15 43.94 62.01 33.26
DGC-Net PCK-1px [%] 70.29 53.97 52.06 41.02 32.74 50.01 20.92 12.88 12.85 7.66 5.67 12.00

PCK-5px [%] 93.70 82.43 77.58 71.53 61.78 77.40 78.88 63.37 60.21 48.83 38.99 58.06

AEPE 1.90 5.65 9.42 11.39 17.26 9.11 6.04 21.60 32.87 41.82 65.03 33.47
DGC-Net† PCK-1px [%] 60.88 47.88 46.01 34.87 25.80 43.09 15.81 9.86 9.84 6.17 4.29 9.19

PCK-5px [%] 93.47 84.04 80.28 74.93 63.76 79.35 75.44 62.16 59.58 46.71 36.21 56.02

AEPE 0.59 4.05 7.64 9.82 14.89 7.40 1.55 12.66 27.54 32.04 51.47 25.05
GLU-Net (Ours) PCK-1px [%] 87.89 67.49 62.31 47.76 34.14 59.92 61.72 42.43 40.57 29.47 23.55 39.55

PCK-5px [%] 99.14 92.39 85.87 78.10 61.84 83.47 96.15 84.35 79.46 73.80 58.92 78.54

Table 3. Details of AEPE and PCK evaluated over each view-point ID of HP and HP-240 datasets.
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Figure 2. PCK curves obtained by state-of-the-art methods and GLU-Net over the different view-points of HP.

in general. GLU-Net achieves better accuracy (better PCK) for all thresholds compared to PWC-Net [21], LiteFLowNet [6]
and DGC-Net [13]. Importantly, GLU-Net obtains significantly better PCK for low thresholds.

3.3.2 Results on ETH3D

In the main paper, Figure 5, we quantitatively evaluated our approach over pairs of ETH3D images sampled from consecutive
frames at different intervals. In Table 4, we give the corresponding detailed evaluation metrics (AEPE and PCK) obtained by
PWC-Net, LiteFlowNet, DGC-Net, DGC-Net† and GLU-Net.

Here, we additionally provide qualitative examples of the different networks and GLU-Net applied to pairs of images at
different intervals in Figure 6. It is visible that while optical flow methods achieve good results for low intervals, the warped
source images according to their outputted flows get worst when increasing the intervals between image pairs. On the other
hand, our model produces flow fields of constant quality.

Qualitative results: We additionally use ETH3D images to demonstrate the superiority of our approach to deal with extreme
viewpoint changes on the one hand, and radical illumination and appearance variations on the other hand.

In addition to the medium resolution images evaluated previously, ETH3D [18] also provides several additional scenes
taken with high-resolution cameras, acquiring images at 24 Megapixel (6048 × 4032). Since the images of a sequence are
taken by a unique camera, consecutive pairs of images show only little lightning variations, however they are related by very
wide view-point changes. As there are no ground-truth correspondences provided along with the images, we only evaluate
qualitatively on consecutive pairs of images. The original images of 6048 × 4032 are down-samled by a factor of 2 for
practical purposes. We show quantitative results over a few of those images in Figure 3. GLU-Net is capable of handling
very large motions, where the other methods partly (DGC-Net) or completely fail (PWC-Net and LiteFlowNet).

On the other hand, our network can also handle large appearances changes due to variation in illumination or due to



LiteFlowNet PWC-Net DGC-Net DGC-Net† GLU-Net (Ours)

AEPE 1.77 1.84 2.53 2.80 2.06
interval = 3 PCK-1px [%] 58.88 54.14 31.50 25.71 47.47

PCK-5px [%] 92.65 92.44 88.34 86.29 91.03

AEPE 2.68 2.18 3.321 3.64 2.61
interval = 5 PCK-1px [%] 53.64 47.02 25.23 19.88 40.22

PCK-5px [%] 90.53 90.53 83.07 80.85 87.74

AEPE 6.13 3.27 4.212 4.70 3.54
interval = 7 PCK-1px [%] 46.97 39.69 20.90 15.86 34.41

PCK-5px [%] 86.29 86.88 78.17 75.31 84.06

AEPE 13.01 5.64 5.38 5.64 4.28
interval = 9 PCK-1px [%] 39.54 32.61 17.61 13.12 30.25

PCK-5px [%] 78.34 81.01 73.58 70.35 80.58

AEPE 29.72 14.39 6.81 7.16 5.65
interval = 11 PCK-1px [%] 31.12 26.15 14.88 11.15 26.54

PCK-5px [%] 65.94 71.74 69.09 65.31 76.61

AEPE 52.45 27.52 9.04 8.91 7.59
interval = 13 PCK-1px [%] 24.82 21.30 12.83 9.34 23.45

PCK-5px [%] 54.94 63.07 64.10 60.24 72.16

AEPE 74.99 43.44 12.25 12.46 10.82
interval = 15 PCK-1px [%] 19.90 17.03 10.69 7.82 20.48

PCK-5px [%] 46.19 54.25 58.52 54.49 67.64

Table 4. Metrics evaluated over scenes of ETH3D with different intervals between consecutive pairs of images (taken by the same camera).
Note that those results are the average over the different sequences of ETH3D dataset. Small AEPE and high PCK are better.

Figure 3. Qualitative examples of state-of-the-art methods applied to very high-resolution images of different scenes of ETH3D. The
presented image pairs show substantial view-point changes, and thus very large motions.

the use of different optics. For this purpose, we utilize additional examples of pairs of images from ETH3D taken by two
different cameras simultaneously. The camera of the first images has a field-of-view of 54 degrees while the other camera
has a field of view of 83 degrees. They capture images at a resolution of 480 × 752 or 514 × 955 depending on the scenes
and on the camera. The exposure settings of the cameras are set to automatic for all datasets, allowing the device to adapt
to illumination changes. Qualitative examples of state-of-the-art methods and GLU-Net applied to such pairs of images are
presented in Figure 5. GLU-Net is robust to changes in lightning conditions as well as to artifacts. While DGC-Net [13]
obtains satisfactory results, the warped image according to its outputted flow is often blurry whereas we always obtain sharp,
almost perfect warped source images.



Figure 4. Qualitative examples of different state-of-the-art algorithms and our GLU-Net applied to HP images. The source images are
warped according to the flow fields outputted by the different networks. The warped source images should resemble the target images. Our
method GLU-Net is robust to drastic view-point changes.



Figure 5. Qualitative examples of ETH3D pairs of images taken simultaneously by two different cameras. The two cameras have different
field-of-views and sometimes different resolutions. Pairs of images experience drastic differences in lightning conditions. The source
images are warped according to the flow fields outputted by different state-of-the-art networks and by our GLU-Net. The warped source
images should resemble the target images.
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Figure 6. Qualitative examples of multiple networks and our GLU-Net applied to pairs of ETH3D dataset taken at different intervals by the
same camera. The source images are warped according to the flow fields outputted by the different networks. The warped source images
should resemble the target images. Optical flow methods obtain good qualitative results for low intervals (3 and 5) but largely degrade on
bigger intervals. On the contrary, GLU-Net has a steady performance over all intervals.



(A) Metrics with respect to rotation
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(B) Metrics with respect to scaling
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Figure 7. Quantitative results (AEPE, PCK-1px and PCK-5px) over the first viewpoint of HP, for different rotation and scaling factors
applied to the target images and ground-truth flow fields. The training datasets are indicated in parenthesis for each model.

3.3.3 Rotation and scaling

We additionally measured the performance of our GLU-Net compared to state-of-the-art networks with respect to increasing
rotation and scaling factors. To do so, we used the 59 pairs of the ViewPoint I of the HP [1] dataset as base images and
applied increasingly high rotation and scaling factors to the target and ground-truth flow fields. In Figure 7, we plot the
metrics (AEPE, PCK-1px and PCK-5px) obtained by GLU-Net, DGC-Net, DGC-Net†, PWC-Net and LiteFlowNet with
respect to increasing applied rotation or scaling factors. For both rotation and scaling, while GLU-Net obtains similar AEPE
than DGC-Net, its accuracy (PCK-1px and PCK-5px) is significantly above that of DGC-Net.

It must also be noted that GLU-Net is particularly robust and accurate for rotations up to +/- 50 degrees and scaling factors
comprised between 0.8 and 1.4. This corresponds to the extent of geometric transformations present in the training dataset.
Therefore, for improved robustness to larger rotations or scaling, image pairs experiencing such transformations should be
additionally included in the training set.

3.4. Semantic correspondences

In Figure 10, we present additional qualitative results on the TSS [23] dataset of our universal network (GLU-Net) and its
modified version (Semantic-GLU-Net), which includes NC-Net [17] and feature concatenation [9].



(A) KITTI-2012 dataset

(B) KITTI-2015 dataset

Figure 8. Representation of the flow fields estimated by state-of-the-art methods and GLU-Net applied to images of : (A) KITTI 2012
dataset, that is restricted to static scenes; (B) KITTI 2015 dataset, which comprises dynamic scenes.

3.5. Optical flow

Additional qualitative results: In Figure 8, we present additional qualitative examples of the estimated flow fields obtained
by our method and competitors on the KITTI datasets. While our approach GLU-Net lacks accuracy at the object boundaries
compared to the optical flow methods, our results are substantially better than those of DGC-Net, which is trained on the
same kind of synthetic geometric transformations. As already stated, improved results, particularly at the object boundaries,
could be obtained by including optical flow data with independently moving objects in the training set.

Supplementary analysis of the optical flow results: According to Table 3 and Figure 5 of the main paper, our GLU-Net
obtains better AEPE than the optical flow methods PWC-Net and LiteFlowNet on the KITTI datasets (Table 3), but worst
AEPE on the first intervals of ETH3D (Figure 5). The reasons for this behavior are explained below. As observed in Figure 9,
while KITTI and ETH3D pairs for small intervals show similar average displacement, the KITTI datasets have a much wider
distribution of displacements due to moving objects and the fast camera forward motion. Besides, our GLU-Net performs



(C) KITTI-2012 (D) KITTI-2015

(A) ETH3D, interval = 3 (B) ETH3D, interval = 5

Figure 9. Ground-truth flow distribution (in log scale) for the ETH3D dataset sampled at small intervals and for the KITTI datasets.

KITTI-2012 KITTI-2015
Small Medium Large Small Medium Large

PWC-Net 0.63 1.58 10.36 0.94 2.89 28.65
LiteFlowNet 0.46 1.24 10.83 0.68 2.32 29.93
DGC-Net 1.53 3.10 21.90 3.44 6.48 36.07
GLU-Net 0.83 1.63 7.68 2.25 4.87 23.01

Table 5. AEPE for different ground truth pixel-displacement categories on the KITTI datasets. Small is defined as ‖wGT ‖2 < 10, Medium
as 10 ≤ ‖wGT ‖2 < 40 and Large as 40 ≤ ‖wGT ‖2. The EPE is averaged over all pixels of the dataset.

substantially better on the large-displacement pixels of KITTI compared to PWC-Net and LiteFlowNet, as evidenced in
Table 5. This explains the on-average advantage of our approach (better AEPE), despite being slightly weaker for small
displacements.

3.6. Detailed ablative analysis

In this section, we provide additional ablation experiments. All networks are trained on CityScape-DPED-ADE dataset.

Coarse-to-fine-approach: We first defend the use of a coarse-to-fine approach with a feature pyramid. We report AEPE and
PCK metrics for the flow estimates obtained at different levels of the feature pyramid of GLU-Net model in Table 6. On the



AEPE PCK-1px [%] PCK-5px [%]

Level 1 [16× 16] 45.49 0.70 13.53
Level 2 [32× 32] 30.00 6.27 50.29
Level 3 [H/8×W/8] 26.43 30.47 74.44
Level 4 [H/4×W/4] 25.05 39.55 78.54

Table 6. Effect of coarse-to-fine approach for our GLU-Net: Metrics calculated over HP images. The flow estimated at each pyramid level
is up-sampled to original image resolution and the metrics are calculated at this resolution.

GLOCAL-Net 1L = 1 H-Net level 2L = 2 H-Net levels 3L = 3 H-Net levels

HP-
240

AEPE 8.77 7.47 7.69 8.93
PCK-1px [%] 48.53 62.85 53.83 35.81
PCK-5px [%] 78.12 85.32 83.17 75.97

AEPE 31.64 24.75 25.55 32.03
HP PCK-1px [%] 10.23 33.92 35.26 28.76

PCK-5px [%] 56.73 76.99 75.79 69.78
TSS PCK [%] 77.29 62.98 78.97 69.78

Table 7. Effect of adaptive resolution and its position. All networks are without iterative refinement and without cyclic consistency. 2
H-Net levels (2L) is the only alternative for a universal network applicable to geometric matching, semantic correspondence and optical
flow.

flow field estimated at each level, we apply bilinear interpolation to the original image resolution and multiply the estimated
flow with the corresponding scale factor for the levels of L-Net. The end-point error decreases from the coarsest level to the
highest level of the pyramid while the accuracy (PCK) increases. This supports the use of a pyramidal model.

Scale pyramid level of the adaptive resolution: In Table 7, we present the influence of the pyramid level at which the
adaptive resolution module is integrated in the four-level pyramid network. Having a single level in L-Net (corresponding
to the global correlation layer) and three pyramid levels in H-Net (referred to as 3L) lead to poor results on all datasets,
even compared to GLOCAL-Net. On the other hand, both other alternatives (1 or 2 levels in H-Net) bring about major
improvements of robustness (AEPE) and accuracy (PCK) on HPatches dataset, particularly on the high-resolution images
HP. However, having only one level in H-Net (1L) degrades the performances obtained on the semantic dataset TSS. H-Net
and L-Net both comprised of 2 pyramid levels (2L) appears as the best option to achieve competitive results on geometric
matching, optical flow as well as semantic matching.



Figure 10. Qualitative examples of our universal network GLU-Net as well as GLU-Net with specific architectural details from the semantic
correspondence literature applied to TSS images. The additional architectural modules are the Neighborhood Consensus Network NC-
Net [17] and concatenating features within the L-Net [9]. Adopting those two modules leads to Semantic-GLU-Net. The source images
are warped according to the flow fields outputted by the different networks. The warped source images should resemble the target images
and the ground-truths.
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