
Supplementary for
Learning from Web Data with Self-Organizing Memory Module

Yi Tu, Li Niu*, Junjie Chen, Dawei Cheng, and Liqing Zhang*

MoE Key Lab of Artificial Intelligence, Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai, China

{tuyi1991,ustcnewly,chen.bys,dawei.cheng}@sjtu.edu.cn,zhang-lq@cs.sjtu.edu.cn

1. Proof and More Details of Value Slots

We first prove that dy,l and ry,l will approximate d̃y,l and
r̃y,l by using Ld-value and Lr-value as the loss function. Recall
that S denotes the whole training set and B ∈ S is a training
bag from the y-th category. x̄ is the bag-level feature and
y is the one-hot vector of y. To distinguish the winner key
slot of different bags, we use win(x̄), instead of z, to denote
the winner key slot index of x̄.

We first divide the d-value loss into L separate parts for
each d-value slot:

Ld-value = −
∑
B∈S

cos(y,dz) (1)

=

L∑
l=1

(
−
∑
B∈S
{cos(y,dl)|win(x̄) = l}

)
,(2)

s.t. ‖dl‖1 = 1, dl ≥ 0, ∀ l. (3)

We use L(dl) = −
∑
B∈S{cos(y,dl)|win(x̄) = l} to

denote the corresponding loss term of dl. We can find that
dl is only influenced by the labels of the bags whose winner
key slot is kl. Recall that ny,l denotes the number of train-
ing bags from the y-th category with winner key slot as kl.
Then we can calculate L(dl):

L(dl) = −
C∑

y=1

ny,l · cos(y,dl)

= −
C∑

y=1

ny,l ·
yTdl

‖y‖2‖dl‖2

= −
C∑

y=1

ny,l ·
dy,l
‖dl‖2

.

(4)

*Corresponding author.

According to the Cauchy inequality theorem, we have:

L(dl) ≥ −

(
C∑

y=1

(ny,l)
2

C∑
y=1

(
dy,l
‖dl‖2

)2

) 1
2

= −

(
C∑

y=1

(ny,l)
2

) 1
2

,

(5)

where the minimum condition is:

ny1,l ·
dy2,l

‖dl‖2
= ny2,l ·

dy1,l

‖dl‖2
, ∀ y1, y2. (6)

Using the constraints in (3), the condition is equivalent to:

dy,l =
ny,l∑C
y=1 ny,l

= d̃y,l ,∀ y. (7)

So far, we have proved that the minimum ofL(dl) can be
reached when dy,l = d̃y,l, ∀ y . Similarly, we can prove that
the minimum of the loss term Lr-value for ry can be reached
when ry,l = r̃y,l, ∀ l . During training, we use the gra-
dient descent algorithm to optimize dl and ry to achieve
the minimum of Ld-value and Lr-value. Notice that these two
optimization tasks are both convex optimization problem,
so we can efficiently approximate the minimal loss and the
minimum condition.

To satisfy the constraints in (3), we first construct two
auxiliary matrices D

′ ∈ RC×L and R
′ ∈ RC×L. They

are not constrained and can be directly optimized by gradi-
ent descent. Then we obtain the the desired D and R with
softmax normalization:

dy,l =
exp(d

′

y,l)∑C
y=1 exp(d

′
y,l)

,

ry,l =
exp(r

′

y,l)∑L
l=1 exp(r

′
y,l)

,

(8)

where the constraints in (3) are satisfied.

Figure 1. Illustration of the memory module results on the Clothing1M dataset. Left: Pie charts of d-scores of all key slots. We choose
three slots to show the detailed d-scores for each category. The first two have a high d-score for “Sweater” and “Dress” respectively, while
the third one has a low d-score for any category. Right: Bar charts of r-scores of all key slots for “Sweater” and “Suit”.

Figure 2. A 5 × 5 square grid with L = 25 key slots. Dashed
lines denote two extra edges. The red cell is the winner key kz of
a given input sample, and the pink circle denotes its neighborhood
N(kz, δ) within the radius δ=1.

2. More Details of the Memory Module

In the self-organizing memory module, we arrange the
key slots on a 5 × 5 square grid. In order to ensure that all
key slots are spatially equivalent and have the same number
of neighbors, we connect the key slots on the edges to their
imaginary neighbors with extra edges as illustrated in Fig-
ure 2. For an example, based on 2D indices of cells in a 5×5
square grid, we use ((i1, j1), (i2, j2)) to denote an edge be-
tween cell (i1, j1) and cell (i2, j2). Then, the extra edges
are {((i, 1), (i, L))|i = 1, 2, ..., 5} and {((1, i), (L, i))|i =
1, 2, ..., 5}, which means that the grid is left-right connected
and top-bottom connected.

Based on the architecture defined above, each key slot
has its spatial neighbors. When updating the winner key
slot, we also update its spatial neighbors. There are two
advantages of applying such a neighborhood constraint:

1) The key slots will be less sensitive to initialization.
Given any initialization, since we will always update a win-
ner key slot and its neighbor slots, the whole key slots will
surely overlap with the feature space of the bag-level fea-
tures after enough iterations.

2) The clustering results will be more balanced. For any
frequently visited key slot which usually implies a dense
cluster, its visits will propagate to its neighboring key slots,
so that any dense cluster will be split into several small clus-
ters captured by multiple key slots.

3. More Visualization Results of the Memory
Module

To demonstrate the effectiveness of our memory mod-
ule, we illustrate the learned d-scores and r-scores of all
L = 144 key slots on Clothing1M in Figure 1, in which
14 colors denote 14 categories. For d-score, each pie chart
shows the d-scores of one key slot for all 14 categories. For
r-score, each bar chart shows the r-scores of all key slots on
a particular category.

4. More Details of K-means Baseline
We have a baseline named SOMNet+K-means in Table

1 in the main text, which means that we use K-means al-
gorithm to replace the self-organizing memory module for
clustering. Since K-means cannot be trained with our net-
work in an end-to-end manner, we run it after each training

epoch.
Following the setting of the memory module, we set the

same number of clustering centers when using K-means
method. We treat each clustering center as a key slot like
in the memory module. After clustering, we calculate d̃y,l
and r̃y,l from the clustering results and use them as the d-
score and r-score for ROI selection.

