
Supplementary Material

1. Examples of Question Graph Generation
Following are some examples of questions and their corre-
sponding generated graphs. Every graph is given both in the
format of a string sequence (as produced by the sequence-
to-sequence model) and as the equivalent question graph.
Each example is taken from a different data source. The
examples are given from simplest graph (a single node) to
larger graphs.

The special tokens used in the string sequences of the
graphs are:

<NewNode>: Indicates a new node, followed by the node
index and the object class (c in the graph figures) strings.
The following strings relate to fields of this node until the
next <NewNode>.

<p>: Indicates a required property, followed by the re-
quired property.

<F>: Indicates a queried property (f in the graph figures),
followed by the queried property type.

<N>: Indicates a queried property of a set of objects (g in
the graph figures), followed by the queried property type.

<rd>: Indicates a relation with a child node, followed by
the required relation and the index of the corresponding
child node.

<rp>: Indicates a relation with a parent node, followed
by the required relation and the index of the corresponding
parent node.

<nodeType>: Indicates the node type field, followed by the
node type (’regular’ or ’superNode’). Note that the default
value is ’regular’, so the field is provided only for super
nodes.

<nodes>: Indicates an included sub node, followed by the
index of the included sub node. This field is only relevant
and provided for super nodes.

<is plural>: Indicates whether the object is given in plural
form, followed by the corresponding boolean value (used
only for phrasing the ’full’ answers). The default is ’false’.

The graph symbols (in the diagrams): c: object class, p:
property, f : queried property, g: queried property of a set
of objects

• VQA dataset:
The following example is taken from the VQA [1] valida-
tion set. The corresponding question graph is generated
by the ’VG-Enhanced’ question-to-graph model.
Question:
Where is the green frog?
Graph String Sequence:
<NewNode>, 1, frog, <p>, green, <F>, location
Question Graph:

c: frog
p: green
f: location

Note: ’Where’ was mapped to the location property; the
question is mapped to a single node.

• Extended CLEVR data:
The following example is based on a CLEVR ques-
tion, modified by replacing CLEVR visual elements with
corresponding ones, sampled from the ’Extended’ set.
The corresponding question graph is generated by the
’Extended-Enhanced’ question-to-graph model.
Question:
Does the flag have the same value as the violet standing
thing?
Graph String Sequence:
<NewNode>, 1, flag, <rd>, same value, 2, <NewN-
ode>, 2, object, <p>, violet, <p>, standing, <rp>,
same value, 1
Question Graph:

In-front-of

c: flag
c: object

 p: violet,
 standing

same-value

Note:
- To generate a graph, the question must be syntactically

correct, but it is not required to have a visual sense or
even to have a reasonable meaning.

- The relation in the question graph includes property
comparison; this type of relations (for properties with
corresponding visual estimators) is handled by the an-
swering procedure.

• CLEVR data:
The following example is taken from the CLEVR val-
idation set [5]. The corresponding question graph is
generated by the ’None-Basic’ question-to-graph model
(which includes mapping of concepts to their synonyms).
Question:
What number of objects are matte cylinders that are on
the left side of the red matte object or cylinders in front
of the block?
Graph String Sequence:
<NewNode>, 1, object, <p>, red, <p>, rubber,
<rd>, left, 2, <NewNode>, 2, cylinder, <p>, rubber,
<is plural>, true, <rp>, left, 1, <NewNode>, 3, cube,
<rd>, front, 4, <NewNode>, 4, cylinder, <is plural>,
true, <rp>, front, 3, <NewNode>, 5, object, <node-
Type>, superNode, <is plural>, true, <nodes>, 2,
<nodes>, 4, <N>, number
Question Graph:

c: object
g: number

is_plural: true

In-front-ofc: cylinder
p: rubber
is_plural: true

c: cylinder
is_plural: true

c: cube
c: object

 p: red,
 rubber

left

Note: the large circle is a super node, which handles
the ’OR’ connective; ’matte’ and ’block’ were mapped
to their corresponding basic terms: ’rubber’ and ’cube’,
respectively.

2. Answering Procedure Algorithm
The answering procedure is a recursive procedure guided
by the question graph to provide an answer. The input is
the question graph and the image, and the output is the
produced answer, possibly combined with elaborations and
explanations. The procedure follows the graph nodes and
edges, invokes the relevant basic procedures and integrates
all the information to provide the answer. A schematic de-
scription of the procedure is given in Algorithm 1 below.
The first step is an instance segmentation, carried out by
applying mask R-CNN [3] to the image. Next, a recursive
function (getGraphAnswer) is invoked for node handling
(starting at a root node of a subgraph, if available, and at
an arbitrary node otherwise). It runs procedures from the
set of basic procedures, which activate visual estimators to
check the requirements (properties, relations), and fetch re-
quired information (queried property). The retrieved ob-
jects from the mask R-CNN that fulfill the requirements are
paired with the corresponding question objects (a ’working
memory’ module is used to store and share this informa-
tion), so that subsequent tests will be applied to the correct

objects. The number of required objects is set according
to quantifiers (e.g. ’all’, ’three’) or by the need to evaluate
a property that depends on the entire object set (e.g. ’how
many’). If a node is a ’sub node’, i.e. included in a ’super
node’, all valid objects are added as optional objects for its
corresponding ’super node’. Once all the node’s object tests
are completed (not including set requirements), the same
function (getGraphAnswer) is invoked for the next node,
determined by a DFS traversal. After the node and the fol-
lowing nodes in the recursion are tested and validated in the
image, tests are applied, if needed, to verify the node’s set
requirements. Examples for such tests are counting the ob-
jects in the set and quantity comparisons. Note that tests
of relations may include property comparisons, e.g. ’same
size’. The recursive process is terminated either when the
full graph is grounded in the image as required or when no
alternatives are left to check, which may happen after a par-
tial check (e.g. no objects of a required class were detected).
The last stage is generating the final answer. Partial an-
swers are provided by the basic procedures invoked during
the graph traversal, in the form of text sequences. The fi-
nal answer is produced from these partial answers, mostly
based on selecting one of them. The provided answers can
be configured to be short or full. Short answers include only
the required information, which can be ”yes”, ”no”, object
class, a particular property, a number, or reporting a fail-
ure such as ”unknown class: ’logo’”. The full answers are
based on the partial answers, which use fixed, short tem-
plates, for example ”Yes, there is a <c1> <r> a <c2>”,
where <r> is the relation, and <c1> and <c2> are the par-
ticipating object classes. Additional explanations and elab-
orations are added (if relevant) to the full answer based on
available intermediate results, as well as additional process-
ing for checking alternatives.
An important aspect of the answering procedure is that it de-
pends only on the abstract structure of the question graph,
and not on the particular object classes, properties and rela-
tions. The particular visual elements are parameters given
to the procedure and used to invoke the corresponding vi-
sual estimators. Hence, graphs with the same abstract struc-
ture, such as the example in Figure 1, induce the same an-
swering procedure. This allows generalization to totally dif-
ferent domains that include novel objects, properties and re-
lations.
The utilized visual estimators perform real-world tasks, cor-
responding to the genuine question’s requirements. Hence,
the intermediate results of the answering procedure can be
exploited for other related tasks. Objects are grounded in
the image according to the requirements of the question
(see markings of intermediate results on images in Figures
2, 3, 4 and in the main paper). This means that the refer-
ring expressions comprehension task [11, 4, 10] is carried
out during the answering process, where the referring ex-

Algorithm 1: Answering procedure
Input: question graph, image
Result: Answer to question
initialization: run instance segmentation (mask R-CNN [3]),
workMem.current node = first root node;
Run[success, answer] = getGraphAnswer :
begin

current node = workMem.current node;
Node parameters: p: properties, r: relations, f : queried

property, g: queried property of a set, obj: candidate objectsa;
for obj in obj do

if ¬ empty(p) then
for p in p do

[success, answer] = is p(obj);
if ¬success then break end

end
if ¬ success then

if #possible objs <#required objsb then
return [success, answer]

else
continue

end
end

end
if ¬empty(f) then answer = get f(obj); end
if empty(r) then

if exist(next root node) then
workMem.current node = next root node;
Run [success, answer] = getGraphAnswer;

end
else

for r in r do
for child obj in child objsc do

[success, answer] = is r(child obj, obj);
if success then

workMem.current node = next noded;
Run [success, answer] = getGraphAnswer;
if success ∧ (#success child objs ==
#required child objsb) then break end

end
if ¬success ∧ (#possible child objs <
#required child objsb) then break end

end
if ¬success then break end

end
end
if success then break end

end
if success ∧ ¬empty(g) then answer = get g(valid objs); end
if success ∧ comp num en ∧ is checked(comp node) then

answer = comp nume(valid objs, comp objs, comp type);
end
if success ∧ is sub node then
save for super node(success objs); end

return [success, answer]
end
aAccording to instance segmentation and previous checks. If ’super node’: candidate
objects are from ’sub nodes’

bAccording to quantifiers
cCandidate objects for child nodes
dEither child node or next unvisited root node of a subgraph
eCompare number of valid objects between nodes (’same’, ’fewer’, ’more’)

pressions are the questions (but also parts of the questions).
Performing the grounding using standard referring expres-

c: boy

c: chair
 p: tall,
 brown,
 wooden

c: handbag
p: full
f: brand

c: toy
 p: stuffed

looking-at close-to on

c: c2

c: c3
 p: p31,

 p32,
 p33

c: c4
p: p41
f: F

c: c1
 p: p11

r1 r2 r3

c: cylinder

c: object
 p: small,
 yellow,
 rubber

c: object
p: metal
f: color

c: cylinder
p: metal

behind right behind

Q2: What brand is the full handbag on the tall brown wooden chair close

to the boy that is looking at the stuffed toy?

Q1: What color is the metallic thing behind the small yellow rubber thing

on the right side of the cylinder that is behind the metal cylinder?

Abstract Graph

Figure 1. Both questions in the two top panels share the same
abstract structure, represented by the graph in the bottom panel,
where visual elements are parameters. All questions represented
by this abstract graph share the same answering procedure, allow-
ing generalization to entirely new domains with novel visual ele-
ments.

sions instead of the questions can be carried out by simple
adaptations. Also, saved results of the checked objects can
be used to enable follow-up questions and carrying out the
visual dialog task [2, 7].
Any estimator can be integrated in our system for any re-
quired object class, property, relation or related prediction.
In addition to the main visual estimators mentioned in the
paper for the conducted experiments, our system employs
general rule based estimators for spatial relations and prop-
erties (e.g. the relation ’on’ and the property ’the left’).

3. Extended Domain Experiment
In this experiment we test methods trained on CLEVR data
(for UnCoRd, we use the ’None-Basic’ question-to-graph
mapper) using questions with a new property type. We use
the ’stackability’ properties (’stackable’, ’nonstackable’),
which refer to the ability to put objects on top of each other
(a property used by humans in the CLEVR-Humans dataset
[6]). Our approach can handle such extensions in a straight-
forward manner, using two steps:

1. A question modification step, where the new property
in the question is replaced with another property (that
does not appear in the question, but was used in the orig-
inal dataset). In the corresponding graph, produced by
the mapper, this property is replaced back to the original
term. Note that this step is required as we use the sim-
plest mapper (no exploitation of extended training for
fairness).

2. Add a ’stackability’ classifier. Two classification options
were tested: a trained classifier (same architecture as our
CLEVR property classifiers, with a classification accu-
racy of 99.98%) and a direct inference as an inherent
property of the object class, without any training (that is,
objects with flat bottom and top such as cubes and cylin-
ders are ’stackable’ where spheres are ’nonstackable’).

We compare our method to TbD [12], which is trained
with question-answer examples and hence it is not possi-
ble to plug-in a property classifier. However, to have a fair
comparison, we apply finetuning to the system, but lim-
ited to a binary classification of the new property, rather
than full QA training. The first step was performed in a
similar manner to step (1) above, by replacing each new
property in the question with a ’known’ property and then
back to the new one in the generated program. This is less
straight-forward than for our method, as replacements are
required for various program elements used by TbD that
are related to the property (e.g. multiple modules such as
’filter stackability[stackable]’, ’query stackability’). The
second step requires questions-answers training (or actu-
ally programs-answers training). As this method composes
a network from modules, we added new modules for the
novel ’stackability’ concepts, and trained them using sim-
ple existence questions (e.g. ’Is there a stackable object?’).
Modified weights in the model were only the ones of the
new modules and of the last classification layer that are con-
nected to the novel answers: ’stackable’ and ’nonstackable’.
This allows the method to learn the function required for
the new modules (corresponding to training a property clas-
sifier in our method). The TbD method includes multiple
modules related to the new property, and it is not possible
to activate all of them during the binary training. Never-
theless, we apply this procedure (which is more demanding
and less natural than the simple classifier plug-in for the
UnCoRd method) as it provides a fair comparison with a
corresponding method to the one used to extend UnCoRd.
The training was performed using one existence question
for each CLEVR training set image. The answering accu-
racy for the corresponding validation set (similar type of
existence questions for the new property on CLEVR valida-
tion images) is 99.95%. This shows that the model is capa-
ble of learning the new property and use it on questions of
the type used in training, but not necessarily generalize to
new questions.
Evaluation of the methods was performed using 10,000 new
questions, generated for CLEVR validation images using
CLEVR questions templates with added ’stackability’ terms
(for all types of questions). The results are summarized in
Table 1, including results of the original TbD method with-
out modifications (with random weights for ’stackability’
modules and other related weights).
The results show that the UnCoRd model maintains its near

Method Exist Count Compare Query Compare OverallNumbers Attribute Attribute

TbD-st 63.7 39.2 63.8 37.9 54.7 45.6
TbD-rand st 21.8 26.7 30.9 24.6 16.7 24.1

UnCoRd-st tr 99.5 98.9 99.8 99.4 99.3 99.3
UnCoRd-st by cl 99.9 99.4 99.8 99.8 99.8 99.7

Table 1. Accuracy of answering questions with ’stackability’
properties on CLEVR validation images.
TbD-st: TbD with binary trained ’stackability’ modules
TbD-rand st: TbD with random ’stackability’ weights
UnCoRd-st tr: UnCoRd with trained ’stackability’ classifier
UnCoRd-st by cl: UnCoRd with ’stackability’ inferred by the object class

perfect results while the extensibility for the TbD fails and
its performance drops considerably. As other end-to-end
methods, question answering is treated as a multi-class clas-
sification problem. This means that by this approach even if
the modules could have been trained properly, the weights
for the last classification layers require an additional appro-
priate tuning. Since the used questions for TbD training
were limited to binary existence questions with ’yes’/’no’
answers, no data was given to properly tune the classifica-
tion weights of the novel answers: ’stackable’ and ’non-
stackable’. This results with the TbD providing these novel
answers improperly and unrelated to the actual questions,
which may hide the actual impact of training the ’stacka-
bility’ modules. Our method does not suffer from this is-
sue, since the simple plugging-in of a ’stackability’ classi-
fier handles the integration of ’stackability’ concepts in all
types of questions, including with the novel answers. Ex-
amining and comparing performance without the effect of
the novel answers was performed by removing the ques-
tions that query the ’stackability’ property and excluding the
novel answers from TbD optional predictions. The results
for this test are given in Table 2.

Method Exist Count Compare Query Compare OverallNumbers Attribute Attribute

TbD-st-no st ans 66.6 46.4 74.0 72.0 66.2 63.3
TbD-rand st-no st ans 69.2 45.2 73.2 73.0 63.9 63.5

UnCoRd-st tr 99.5 98.9 99.8 99.4 99.3 99.3
UnCoRd-st by cl 99.9 99.4 99.8 99.9 99.8 99.7

Table 2. Accuracy of answering questions with ’stackability’ prop-
erties without novel answers (’stackable’, ’nonstackable’). Nam-
ing corresponds to Table 1, where the additional suffix -no st ans
represents cancelling the prediction of the novel answers.

For this test TbD results improve but are still much infe-
rior to the UnCoRd method, which remained practically
the same. It is interesting to see that the TbD results with
trained ’stackability’ modules are not better than with un-
trained modules. The results imply that tuning the novel
modules by one specific task (one type of questions) does
not guide the modules in a general direction of perform-
ing their designated tasks. Explicit training is required for
other question types to increase their performance. The

modules have no independent meaning as real ’stackabil-
ity’ classifiers. Our method uses real classifiers and does
not share this limitation. Also, the fact that TbD with
untrained ’stackability’ modules does not fail completely
demonstrates that each module has a limited effect in tun-
ing the final results of the full network. As each question
include at least one ’stackability’ concept (average of 1.4
’stackability’ concepts per question), the performance is dif-
ferent than expected if a real visual estimator was replaced
by a random results generator. As all modules in the TbD
method receive the same image features as an input (in ad-
dition to the previous module’s output), this may imply that
the modules have a limited (but not negligible) effect on the
generated features passed to the classification layers.
Some examples of questions and answers with the ’stacka-
bility’ concepts are shown in Figure 2 (UnCoRd’s answers
were the same for both ’stackability’ classification options).

Q: What number of other objects are there of Q: There is a green thing that is on the left side
the same stackability as the blue metallic of the block that is in front of the blue thing;
object? GT: 7 what stackability is it? GT: nonstackable

UnCoRd A: 7 UnCoRd A: nonstackable
TbD-st A: 5 TbD-st A: nonstackable
TbD-st-no st ans A: 5 TbD-st-no st ans A: no

Q: Are there any large gray spheres left of the Q: There is another nonstackable object that is
nonstackable object that is on the right side the same size as the blue nonstackable thing;
of the small stackable thing in front of the what is its color? GT: brown
brown stackable object? GT: yes UnCoRd A: brown

UnCoRd A: yes TbD-st A: nonstackable
TbD-st A: no TbD-st-no st ans A: gray
TbD-st-no st ans A: no

Figure 2. Examples for questions and answers on CLEVR images
with the ’stackability’ properties.

The results of the performed extensibility tests demonstrate
the limitations in extending end-to-end VQA models, even
the ones designed as a composition of modules. Compo-
sitional neural network were proposed to break the ques-
tion answering task into separate tasks carried out by sep-
arate modules that are composed according to a program.
However, as demonstrated above, these modules cannot
be trained independently of the question answering task
and cannot handle novel reasoning combinations, unseen in
training. Contrary to this limitation, our method is extended
naturally with novel concepts that can be used in all ques-
tion types. This emphasizes the advantages of our method

in extending its scope beyond the training domain.

4. Commonsense Utilization
In general question answering, there is an important role to
prior common knowledge, such as connections between cat-
egories of objects. To obtain general commonsense knowl-
edge we use ConceptNet database (version 5) [15]. The
source of information for this database is the internet (as
well as results from additional databases). It allows query-
ing for concepts and relations between them of the form:

concept1 - relation→ concept2 (e.g. horse - IsA→ animal)

The query is performed by providing two of the triplet [rela-
tion, concept1, concept2] and querying for the third. These
common knowledge relations provide complement capabil-
ities for answering ’real world’ questions in which such
common knowledge is assumed. We currently use Concept-
Net mainly to extend understanding of objects’ classes (e.g.
superordinate classes and similar classes).

5. Examples for Answer Elaboration
Following are examples for images and corresponding
questions, with answers provided by the UnCoRd system.
The answers were configured to be full, and consequently
provide explanations and seek alternatives, when an answer
is not grounded in the image. Figure 3 demonstrates a failed
grounding, and in Figure 4, alternatives are examined and
reported. Note that the domains in the two examples are
completely different; in Figure 3 image and question are
from the CLEVR domain, while in Figure 4 the domain is
real-world images and categories.

Q: Are any tiny green metal things visible?
A: There are no valid green objects (failed due to 4 large

objects, a purple object and a red object)

Figure 3. An example of UnCoRd answer in the ’full’ mode, ex-
plaining a failed grounding. The question-to-graph model was
’Min-Enhanced’.

Q: Is the man looking at a cat?
A: Couldn’t find any object of class: man (found

subclasses: a woman and a girl).
There are no people (superordinate class) looking at a cat.
Existing alternative relations (to man-looking at-cat):
’person to the left of a cat’

Figure 4. An example for UnCoRd ’full’ answer, demonstrating
reporting alternatives. The question-to-graph model was ’Min-
Enhanced’. The used visual estimators are mask R-CNN [3] (for
the 80 classes of COCO dataset [9]), age and gender classification
[8], face detection [13] and gaze estimation [14]. When a subordi-
nate class of a person (in this case ’man’) fails, the more general
class ’person’ is tested and proposed as an alternative. In addition,
alternative relations are tested when the requested relation fails.

References
[1] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret

Mitchell, Dhruv Batra, C. Lawrence Zitnick, and Devi
Parikh. Vqa: Visual question answering. In International
Conference on Computer Vision (ICCV), 2015. 1

[2] Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh,
Deshraj Yadav, Jose M. F. Moura, Devi Parikh, and Dhruv
Batra. Visual dialog. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017. 3

[3] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In Proceedings of the International
Conference on Computer Vision (ICCV), 2017. 2, 3, 6

[4] Ronghang Hu, Huazhe Xu, Marcus Rohrbach, Jiashi Feng,
Kate Saenko, and Trevor Darrell. Natural language object
retrieval. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016. 2

[5] Justin Johnson, Bharath Hariharan, Laurens van der Maaten,
Li Fei-Fei, C. Lawrence Zitnick, and Ross Girshick.

CLEVR: A diagnostic dataset for compositional language
and elementary visual reasoning. In CVPR, 2017. 2

[6] Justin Johnson, Bharath Hariharan, Laurens van der Maaten,
Judy Hoffman, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. Inferring and executing programs for visual rea-
soning. In ICCV, 2017. 3

[7] Satwik Kottur, José MF Moura, Devi Parikh, Dhruv Batra,
and Marcus Rohrbach. Clevr-dialog: A diagnostic dataset
for multi-round reasoning in visual dialog. arXiv preprint
arXiv:1903.03166, 2019. 3

[8] Gil Levi and Tal Hassner. Age and gender classification us-
ing convolutional neural networks. In IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR) workshops,
June 2015. 6

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014. 2014. 6

[10] Runtao Liu, Chenxi Liu, Yutong Bai, and Alan L. Yuille.
Clevr-ref+: Diagnosing visual reasoning with referring ex-
pressions. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019. 2

[11] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L. Yuille, and Kevin Murphy. Generation and
comprehension of unambiguous object descriptions. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2016. 2

[12] David Mascharka, Philip Tran, Ryan Soklaski, and Arjun
Majumdar. Transparency by design: Closing the gap be-
tween performance and interpretability in visual reasoning.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4942–4950, 2018. 4

[13] M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool.
Face detection without bells and whistles. In ECCV, 2014. 6

[14] Adria Recasens∗, Aditya Khosla∗, Carl Vondrick, and An-
tonio Torralba. Where are they looking? In Advances in
Neural Information Processing Systems (NIPS), 2015. ∗ in-
dicates equal contribution. 6

[15] Robert Speer and Catherine Havasi. Conceptnet 5: A large
semantic network for relational knowledge. In The People’s
Web Meets NLP: Collaboratively Constructed Language Re-
sources, pages 161–176. Springer Berlin Heidelberg, 2013.
5

