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1. Numeric results
Timings are measured on a Nvidia GTX 1050 Ti 4GB GPU with quad core Intel i7 4770K and 32 GB RAM. Algorithms are

implemented in PyTorch 1.2.0 with cuDNN 7.6. PyTorch benchmark mode, which chooses the optimal back-end algorithm
for tensor operations, is used for fair comparison. To measure inference speed, 2000 validation images are preloaded. The
first 1000 images are used in the warmup phase and processing speed of the last 1000 images is reported as images processed
per second (Im/Sec).Theoretical computational complexity is reported in Multiply-Accumulates (MACs). We use a publicly
available script 1 to count the amount of operations in convolutional and fully connected layers.

1.1. Classification

1.1.1 ResNet-32 on CIFAR-10

Classification with standard ResNet-32 [4] on CIFAR-10 [6], standard train/test split with 50000 training and 10000 test im-
ages. Mask unit is a squeeze unit. See Table 1 for numeric results. Same hyperparameters as ConvNet-AIG [10]. Optimizer:
SGD, momentum: 0.9, learning rate: 0.1, batch size: 256, epochs: 350, learning rate decayed at epochs 150 and 250 by factor
0.1. Gumbel temperature τ = 1 and Gumbel noise set to zero at epoch 280. Data augmentation is the same as ResNet [4]:
padding of 4 pixels and random crop of 32× 32 pixels.

1.1.2 ResNet-101 on ImageNet

Standard ResNet-101 [4] on ILSVRC2012 [2] with 1000 ImageNet classes, using the standard train/validation split with 1.28
million train images and 50000 validation images. Mask unit is a squeeze unit. See Table 2 for results. Optimizer: SGD,

1https://github.com/sovrasov/flops-counter.pytorch

Table 1: Results on CIFAR-10

Model budget θ Parameters # masks Acc (top-1) MACs MACs (mask units)

0.9 93.87 65.45×106 1.40×106

0.8 93.66 61.46×106 1.40×106

0.7 93.58 55.45×106 1.40×106

0.6 93.53 48.11×106 1.40×106

ResNet-32 0.5 472056 15 93.05 41.08×106 1.40×106

(DynConv) 0.4 92.57 33.71×106 1.40×106

0.3 92.27 26.31×106 1.40×106

0.2 91.81 19.55×106 1.40×106

0.1 90.44 14.73×106 1.40×106

ResNet-32 466906 93.57 70.06×106 N.A.

ResNet-26 369690 93.32 55.73×106 N.A.

ResNet-20 N.A. 272474 N.A 92.89 41.41×106 N.A.

ResNet-14 175258 91.47 27.08×106 N.A.

ResNet-8 78042 88.04 12.75×106 N.A.
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Table 2: Results on ImageNet

Model Budget θ # Params # Masks Top 1 acc. Top 5 acc. MACs MACs (mask units)

ResNet-101 (DynConv)

0.8 44854506 33 78.0 94.0 6418×106 80×106

0.7 44854506 33 77.9 93.8 5640×106 80×106

0.5 44854506 33 77.0 93.4 4235×106 80×106

0.3 44854506 33 75.6 92.7 2974×106 80×106

ResNet-101 (baseline) N.A 44549160 N.A. 78.1 94.0 7849×106 N.A.

ResNet-50 (baseline) N.A 25557032 N.A. 76.2 93.0 4121×106 N.A.
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Figure 1: Integration of dynamic convolutions in the residual variant of ShuffleNetV2. The residual block is similar to those
of MobileNetV2, but has additional channel split and shuffle operations.

momentum: 0.9, learning rate: 0.025, batch size: 64, total epochs: 50, learning rate decayed at epochs 15, 30 and 45 by
factor 0.1. Gumbel temperature τ = 5, decayed to 2 and 1 at epoch 15 and 30 respectively. Gumbel noise set to zero at
epoch 40. Model initialized with pretrained ResNet-101 weights. Standard InceptionV3 augmentation [9]. During training,
a random crop is resized to size 224 × 224 with random horizontal flip. During testing, the image is rescaled to 256 × 256
and a 224× 224 center crop is taken.

1.1.3 MobileNetV2 and ShuffleNetV2 on Food-101

Classification with MobileNetV2 [8] and ShuffleNetV2 [12] on Food-101 [6], standard train/test split with 75750 training
and 25250 test images equally distributed over 101 classes. The MobileNetV2 model uses width multiplier 0.75, The Shuf-
fleNetV2 model is the residual variant (Fig. 1) with width multiplier 1.0. Since each residual block of ShuffleNetV2 has
fewer computations than those of MobileNetV2, we experimented with a 1×1 convolution as mask unit, in addition to the
squeeze unit described previously. Optimizer: SGD, momentum: 0.9, learning rate: 0.05, batch size: 64, total epochs: 100,
cosine learning rate annealing. Gumbel temperature τ = 1 and Gumbel noise set to zero at epoch 80. Standard InceptionV3
augmentation [9]. During training, a random crop is resized to size 224 × 224 with random horizontal flip. During testing,
the image is rescaled to 256 × 256 and a 224 × 224 center crop is taken.Gumbel-Softmax uses the standard formulation,
while Gumbel-Binary is our computationally cheaper reformulation. Results in Table 3.

1.2. Pose Estimation

1.2.1 Stacked hourglass on MPII

Pose estimation using a stacked hourglass network [7], where the residual blocks are replaced by those of MobileNetV2 [8]
(Fig. 2). The mask unit is a 1×1 convolution.

Note that existing methods for spatial conditional execution, e.g. SACT [3], are not directly applicable due to the large
amount of branches in the network. Our method operates on each residual block individually.The expand ratio of the residual
blocks is 6, e.g. 96 features get expanded to 576 features for the depthwise convolution. We use the MPII [1] dataset with the
same train/validation split as [7], having respectively 22k and 3k images. Models with different layer width are obtained by
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Table 3: Results on Food-101

Model Parameters # Masks Acc (top-1) MACs MACs (mask units) Im/Sec

MobileNetV2 x0.75 (baseline) 1484805 N.A. 82.0 225×106 N.A. 508

+ DynConv (θ = 0.75) 1490825 10 81.2 200×106 1.82×106 541

+ DynConv (θ = 0.50) 1490825 10 80.6 174×106 1.82×106 629

+ DynConv (θ = 0.25) (Gumbel-Binary) 1490825 10 79.8 148×106 1.82×106 724

+ DynConv (θ = 0.25) (Gumbel-Softmax) 1490825 10 79.8 148×106 1.82×106 522

ShuffleNetV2 (baseline) 1357129 N.A. 78.7 149×106 N.A. 710

+ DynConv(θ = 0.25) (squeeze mask unit) 1373975 13 76.5 100×106 3.30×106 781

+ DynConv(θ = 0.25) (1×1) conv mask unit) 1358824 13 76.3 97×106 0.33×106 889
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Figure 2: Overview of an hourglass network with 2 stacks. All red residual blocks are executed with dynamic convolutions.

scaling the number of channels with a width multiplier. We use the implementation of Fast Pose Distillation [11] 2.
Optimizer: Adam, momentum: 0.9, learning rate: 2e-4, batch size 6. Output heatmaps of size 64× 64 with mean-square

error loss. Total epochs: 100, learning rate decayed at epochs 60 and 90 by factor 0.1. Gumbel temperature τ fixed to 1
and Gumbel noise set to 0 at epoch 80. Data augmentation: Images are resized to 256 × 256 and augmented with ±30
degrees rotation, ±25 percent scaling and random horizontal flip. no flip augmentation during evaluation. Results in Table 4.
Accuracy is given in PCKh@0.5, defined as the percentage of correct keypoints where the prediction and ground truth are
closer than 50% of the head bone link length.

2https://github.com/ilovepose/fast-human-pose-estimation.pytorch
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Table 4: Results on MPII validation set (pose estimation)

Model Width mult # Params Budget θ # Masks PCKh@0.5 MACs MACs (mask units) Im/Sec

4-stack (DynConv) 1 6885433

0.75

TODO

88.1 5.39×109 0.02×109 32
0.50 88.2 3.78×109 0.02×109 46
0.25 87.5 2.30×109 0.02×109 69

0.125 86.7 1.71×109 0.02×109 80

4-stack (baseline)

1 6879904

N.A. N.A.

88.1 6.88×109 29
0.875 5317726 87.6 5.32×109 35

0.75 3956176 87.0 3.96×109 N.A. 39
0.50 183496 85.2 1.83×109 68

2-stack (DynConv) 1 3527101

0.75

TODO

86.7 3.08×109 0.01×109 37
0.50 86.5 2.19×109 0.01×109 77
0.25 86.1 1.39×109 0.01×109 104

0.125 85.3 1.06×109 0.01×109 130

2-stack (baseline)

1 3524288

N.A. N.A.

86.6 3.88×109 51
0.875 2724278 86.1 3.00×109 58

0.75 2026976 85.5 2.23×109 N.A. 68
0.50 940496 83.0 1.03×109 110

1-stack (DynConv) 1 1.847935

0.75

TODO

83.6 1.89×109 0.01×109
0.50 83.5 1.43×109 0.01×109
0.25 82.7 0.95×109 0.01×109

0.125 81.1 0.74×109 0.01×109

1-stack (baseline)

1 1846480

N.A. N.A.

83.6 2.37×109
0.875 1427554 82.6 1.83×109

0.75 1062376 82.0 1.37×109 N.A
0.50 493264 78.9 0.63×109
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Figure 3: Mask unit architectures

2. Mask unit architecture
The mask unit is a small trainable network that indicates the positions where the spatial 3×3 convolution of the residual

block should be evaluated. Figure 3 shows the architecture of the mask units used in our experiments. The mask units are
computationally cheap compared to the convolutions in a residual block, since the output of this operation is only a single
channel. We observe that the squeeze unit (proposed in [3]) achieves slightly higher accuracy than the 1×1 convolution, but
is more complex.

3. Binary Gumbel-Softmax
This section includes the full derivation of Section 3.1.2 in the paper. As shown in Section 4.1.1 in the paper, the simplified

formulation of the Gumbel-Softmax for binary cases is needed for faster inference. We start from the formulation by Jang et
al. [5]. Take a categorical distribution with class probabilities π = π1, π2, ...πn, then discrete samples z can be drawn using

z = one hot
(
argmax

i
[log(πi) + gi]

)
(1)

with gi being noise samples drawn from a Gumbel distribution. The Gumbel-Softmax trick defines a continuous, differen-
tiable approximation by replacing the argmax operation with a softmax:

yi =
exp((log(πi) + gi)/τ)∑k

j=1 exp((log(πj) + gj)/τ)
. (2)

Gating decisions are binary, which makes it possible to strongly simplify the Gumbel-Softmax formulation. A soft-
decisionm ∈ (−∞,∞), outputted by a neural network, is converted to a probability π1 indicating the probability that a pixel
should be executed, using a sigmoid σ:

π1 = σ(m). (3)

Then, the probability that a pixel is not executed is

π2 = 1− σ(m). (4)

Writing out Equation 2 for the binary case (k = 2) and i = 1 gives

y1 =
exp ((log π1 + g1)/τ)

exp ((log π1 + g1)/τ) + exp ((log π2 + g2)/τ)
(5)
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Substituting π1 and π2 in Equation 5, for the binary case of k = 2 and i = 1, makes it possible to reduce this:

y1 =
exp

( log σ(m)+g1
τ

)
exp

( log σ(m)+g1
τ

)
+ exp

( log (1−σ(m))+g2
τ

) (6)

=

(
exp (log σ(m) + g1)

) 1
τ

exp
(
log σ(m) + g1

) 1
τ + exp

(
log (1− σ(m)) + g2

) 1
τ

(7)

=

(
exp (log σ(m)) exp (g1)

) 1
τ(

elog σ(m)eg1
) 1
τ +

(
elog (1−σ(m))eg2

) 1
τ

(8)

=

(
σ(m)eg1

) 1
τ(

σ(m)eg1
) 1
τ
+
(
(1− σ(m))eg2

) 1
τ

(9)

=

(
σ(m)eg1

) 1
τ(

σ(m)eg1
) 1
τ +

(
(1− σ(m))eg2

) 1
τ

(10)

=
1

1 +

(
(1−σ(m))eg2

) 1
τ(

σ(m)eg1
) 1
τ

(11)

=
1

1 +
(

(1−σ(m))
σ(m)

exp (g2 − g1)
) 1
τ

(12)

=
1

1 +

((
1− 1

1+exp(−m)

)
1

1+exp(−m)

exp (g2 − g1)
) 1
τ

(13)

=
1

1 +
(
(1− 1 + exp(−m)) exp (g2 − g1)

) 1
τ

(14)

=
1

1 +
(
exp(−m) exp (g2 − g1)

) 1
τ

(15)

=
1

1 + exp
(−m+g2−g1

τ

) (16)

= σ

(
m+ g1 − g2

τ

)
. (17)

4. Implementation Details
This section elaborates on the implementation of our components. Our PyTorch implementation is available at https:

//github.com/thomasverelst/dynconv. We use residual blocks of MobileNetV2, but our method is generally
applicable on different architectures of residual blocks. For simplicity of notation, we only consider residual blocks where
the dimensions of the block’s input features are the same as the dimensions of the block’s output. The architecture of a
MobileNetV2 block with dynamic convolutions is given in Algorithm 4. Pseudocode is given in Algorithm 1 and the next
sections elaborate on the individual functions.

Algorithm 1 Residual block with dynamic convolutions
procedure RESIDUALBLOCK(I)

M ←M(I)
T ← Gather(I,M)
T ← 1×1 convolution(T )
T ← ReLU (batchnorm(T ))
S ← ModifiedDepthwiseConvolution(T,M)
S ← ReLU (batchnorm(S))
S ← 1×1 convolution(S)
S ← batchnorm(S)
R← Scatter(S,M)
return R+ I

6
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Figure 4: Architecture of a residual block for efficient sparse inference. The mask unitM generates a mask based on the
block’s input. The gather operation uses the mask to copy selected spatial positions (yellow) to a new intermediate tensor.
Non-spatial operations use standard implementations, while the 3×3 convolution is modified to operate on the intermediate
tensor.
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4.1. Gather-Scatter Operation

The input I of a residual block is a 4D tensor with dimensions N×C×H×W . A single input element has indices
n, c, h, w. A spatial position is evaluated when a value of the mask M = M(I) is greater than or equal to 0. To avoid
gaps in the input of the 3×3 convolution, the mask M is morphologically dilated, resulting in a new mask D. The gather
operation selects all channels of I at spatial positions indicated by D puts them sequentially in a new contiguous tensor
T with dimensions P×C×1×1. This tensor can be seen as a large batch of 1×1 images with C channels. Non-spatial
operations such 1×1 convolutions, ReLU and batchnorm can be evaluated with standard implementations. Algorithm 2 gives
psuedocode for the gather operation and Algorithm 4 is used in the gather operation to map between I and T . The scatter
operation (Alg. 3) applies the inverse operation. Our CUDA implementation executes most operations in parallel.

Algorithm 2 Gather operation
procedure GATHER(I , M )

# input: input features I ∈ RN×C×H×W

# input: mask M ∈ RN×H×W

# output: intermediate tensor T ∈ RP×C×1×1

D ← dilate(M)
L← TensorToList(D)
P ← length(L)
T ← empty tensor ∈ RP×C×1×1

for p = 0..P do
flattened position ← L[p]

# Convert flattened position to batch, width and height indices
n← flattened position /(H ×W )
h← (flattened position/W ) %H
w ← flattened position %W

# Copy elements to intermediate tensor
for channel index c = 0..C do

Tp,c,1,1 ← In,c,h,w

return T

Algorithm 3 Scatter operation
procedure SCATTER(S, M )

# input: intermediate tensor S ∈ RPS×C×1×1

# input: mask M ∈ RN×H×W

# output: output features O ∈ RN×C×H×W

L← TensorToList(M)
PS ← length(L)
O ← tensor initialized with 0 ∈ RN×C×H×W

for p = 0..PS do
flattened position ← L[p]

# Convert flattened position to batch, width and height indices
n← flattened position /(H ×W )
h← (flattened position/W ) %H
w ← flattened position %W

# Copy elements to output tensor
for channel index c = 1..C do

In,c,h,w ← Sp,c,1,1

return S

8



Algorithm 4 Mask-to-list function
procedure TENSORTOLIST(A)

# input: tensor A ∈ RN×H×W

# output: list L ∈ ZP of positions where T ≥ 0
L← empty list
for batch index n = 0..N do

for height index h = 0..H do
for width index w = 0..W do

if An,h,w > 0 then
flattened position ← n ∗H ∗W + h ∗W + w
L.add(flattened position)

return L

4.2. Modified 3x3 Depthwise Convolution Operation

The depthwise convolution applies a 3 × 3 convolutional kernel to each channel separately. We implement a custom
CUDA kernel that applies the channelwise filtering efficiently on T . The spatial relation between elements of T is lost due to
its dimensions being P ×C× 1× 1. When processing an element t in T , our implementation retrieves the memory locations
of spatial neighbors using an index mapping from I to T . The output is a new intermediate tensor S where the number of
elements in S is smaller than or equal to the number of elements in T .

Algorithm 5 Modified depthwise convolution
procedure MODIFIEDDEPTHWISECONVOLUTION(T , M )

# input: intermediate tensor T ∈ RP×C×1×1

# input: mask M ∈ RN×H×W

# output: intermediate tensor S ∈ RPS×C×1×1

# the convolution weight matrix is W ∈ RC×1×3×3

# Make index mapping from I to T
D ← dilate(M)
Q← empty tensor ∈ ZN×H×W

i← 0
for batch index n = 0..N do

for height index h = 0..H do
for width index w = 0..W do

if Dn,h,w > 0 then
i← i+ 1
Qn,h,w ← i

L← TensorToList(M)
PS ← length(L)
S ← empty tensor ∈ RPS×C×1×1

for p = 1..PS do
flattened position ← L[p]

# Convert flattened position to batch, height and width indices
n← flattened position /(H ×W )
h← (flattened position/W ) %H
w ← flattened position %W

# Apply convolution on all channels
for channel index c = 0..C do

val ← 0
for kernel offset kh = 0..3 do

for kernel offset kw = 0..3 do
if h+ kh− 1 ≥ 0 and h+ kh− 1 < H then

if w + kw − 1 ≥ 0 and w + kw − 1 < W then
weight←Wc,1,kh,kw

t← Qn,h+kh−1,w+kw−1

val← val+ weight× Tt,c,1,1
t← Qn,h,w
St,c,1,1 ← val

return S
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4.3. Other tweaks

PyTorch with benchmark mode enabled is faster when the input matrices of convolutions have regular dimensions. There-
fore the batch dimension of matrices T and S is rounded up to the nearest multiple of 64. The padded elements are not
initialized and ignored by the scatter operation.
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