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1. Early Recognition Performance

Fig. 1 shows the entire performance curves of several
policies on the NTU dataset, plotting the recognition accu-
racy as a function of the observational ratio. To reduce clut-
ter, we only plot the top performing policies in this figure.

The policy learned by reinforcement learning outper-
forms all other policies. Note that the upper bound for all
the policies can be obtained by assuming that all views are
available all the time. In this case, the obtained recognition
accuracy is 81.28% and the average early recognition acc is
61.77%. The learned policy has a recognition accuracy of
79.62% and the early recognition accuracy acc of 58.01%,
which are not too far from these upper bound values, even
though the learned policy only uses one third of the video
frames.
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Use all views (every time step): 61.77
select a random view: 54.81
cycle through the views: 56.31
Use the learned policy: 58.01

Figure 1: Early recognition performance on the NTU
dataset. This shows the recognition accuracy against the
observational ratio, which is the proportion of an action
that has been observed when the recognition decision is
made. The learned policy outperforms random-view and
cycle-view policies.

2. Handling missing frames on IXMAS and
nvGesture dataset

In this section, we demonstrate the effect of mfLSTM for
handling unobserved video frames on the IXMAS dataset
and the nvGesture dataset. We observe similar trends as for
the NTU dataset.

Following Section 5.3, we measure the classification per-
formance of our proposed method and other baselines for
two test scenarios. In Test Scenario 1, the test sequences
have variable frame rates due to the random frame dropping;
the dropping rate ranges from 20% to 70%. In Test Scenario
2, the test sequences are the original test sequences; every
frame is observed.

Table 1 and Table 3 show the experiment results for Test
Scenario 1 on the IXMAS dataset and nvGesture dataset
respectively. It reports the action classification accuracy
of three methods on each camera views separately. The
proposed approach mfLSTM for handling missing frames
achieves the best performance. Compared to LSTM without
data augmentation, mfLSTM is around 40% better for IX-
MAS dataset and 20% better for nvGesture dataset on aver-
age. Compared to LSTM with data augmentation, mfLSTM
is around 3% better for IXMAS dataset and 2% better for
nvGesture dataset on average.

The proposed approach mfLSTM also improves the clas-
sification performance on Test Scenario 2, where there
are no missing video frames. Table 2 and Table 4 show
the classification performance on the test sequences with-
out dropped frames on the IXMAS dataset and nvGes-
ture dataset respectively. mfLSTM outperforms the nor-
mal LSTM. The better generalization ability of the pro-
posed method can be attributed to having augmented train-
ing data, proactively preparing the classifier for a wide
range of cases. However, as can be seen from Table 2,
the augmented training data hurts the performance of the
LSTM classifier. This is due to having the wrong type of
augmented data: the test data has no missing frames, while
the generated training data is severely corrupted. On the
other hand, the proposed mfLSTM with learnable decay pa-
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Method View 1 View 2 View 3 View 4 View 5

LSTM 44.39 50.90 42.87 48.78 35.45
LSTM + data augmentation 83.78 84.39 87.57 87.72 68.63
mfLSTM + data aug. (proposed) 87.57 87.87 86.45 91.51 69.99

Table 1: Handling missing frames – Test Scenario 1. This shows the classification accuracies of several methods on the test
sequences that are corrupted by random frame dropping (the dropping rate ranges from 20% to 70%) on the IXMAS dataset.
The proposed mfLSTM with augmented training data achieves the best performance.

Method View 1 View 2 View 3 View 4 View 5

LSTM 93.03 89.09 91.51 89.09 76.66
LSTM + data augmentation 85.75 86.06 90.30 87.57 72.42
mfLSTM + data aug. (proposed) 93.63 90.90 90.60 90.90 76.66

Table 2: Handling missing frames – Test Scenario 2. This shows the classification accuracies of several methods for the
second test scenario where every frame of the test sequences is observed on IXMAS dataset. The proposed mfLSTM with
augmented training data achieves the best performance. For the original LSTM network, training with the augmented data
hurts its performance due to the discrepancy between the augmented training data and the test data.

Method RGB Flow Depth Duo

LSTM 47.09 50.87 61.53 43.73
LSTM + data augmentation 64.52 71.49 74.89 62.86
mfLSTM + data aug. (proposed) 66.35 73.20 75.93 63.86

Table 3: Handling missing frames – Test Scenario 1.
This shows the classification accuracies of several methods
on the test sequences that are corrupted by random frame
dropping (the dropping rate ranges from 20% to 70%) on
the nvGesture dataset. The proposed mfLSTM with aug-
mented training data achieves the best performance.

Method RGB Flow Depth Duo

LSTM 69.70 75.10 79.49 66.59
LSTM + data augmentation 69.29 74.68 79.25 65.98
mfLSTM + data aug. (proposed) 70.95 76.97 79.87 67.01

Table 4: Handling missing frames – Test Scenario 2. This
shows the classification accuracies of several methods for
the second test scenario where every frame of the test se-
quences is observed on nvGesture dataset. The proposed
mfLSTM with augmented training data achieves the best
performance. For the original LSTM network, training with
the augmented data hurts its performance due to the dis-
crepancy between the augmented training data and the test
data.

rameters has the right architecture to take advantages of the
augmented training data.
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Figure 2: The decay weight parameter wt as a function
of ∆t. wt controls the contribution of the last observed
values toward the estimation of the missing values. The
contribution decreases as the difference between two time
steps increases.

3. Visualize weight parameter in mfLSTM

Recall that the mfLSTM network uses a weight parame-
ter wt to control how much the missing values will be es-
timated based on the last observed values. wt is a multi-
dimensional function of the elapsed time ∆t. Figure 2 plots
the average value of wt (averaged over its dimensions) for
different elapsed times. The values of wt decrease as the
elapsed time increases. This is desirable because the signif-
icance of observation should decay over time.



4. Visualize the learned policy
We show the behavior of the learned policy at test time in

Fig. 3. There is no particular pattern for the behavior of the
policy; it does not stick to any particular view and it does
not cycle through the views in any order. But the learned
policy outperforms the random policy in our experiments,
so it must take into account what is occurring and what has
been observed to make the decisions.
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Figure 3: A sequence of decision by the learned policy. This shows 10 random examples for which views the learned policy
selects at test time. The circles indicate the selected views. There is no particular pattern for the behavior of the policy. It
appears to be random, but it is not.


