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1. Additional Analysis

1.1. Additional ranking visualizations

In we rank ordered the fake images according
to how “fake” the classifier deemed them to be.
These full ranking results are included in the follow-
ing link: https://peterwang512.github.io/
CNNDetection/ranking/. We randomly select 20
real and 20 fake images from each dataset, and rank all
images based on our (Blur+JPEG (0.1)) model’s scores.
Note that there is a clear separation between real and fake
images, where the real images have lower “fakeness” score
and vice versa. Moreover, we observe the synthetic images
ranked more “real” are super resolution (SAN) outputs, and
the ones ranked more “fake” are CRN and IMLE outputs.
However, we observe little noticeable correlation between
the model predictions and the visual quality of the synthe-
sized images in each dataset, where BigGAN and StarGAN
images are the exceptions.

1.2. Effect of dataset size

We include additional ablation studies on the effect of
dataset size, and the results are shown in Table 1. To com-
pare with the dataset diversity ablation in Section 4.3 of the
main text, we train 4 additional models with 10%, 20%,
40%, 80% of the entire dataset respectively, while having
all 20 LSUN classes included in the training set. Same
augmentation scheme as Blur+JPEG (0.5) is applied to all
models. We observe much less reduction in generalization
performance, indicating data diversity, comparing to dataset
size, contributes more towards better CNN detection in gen-
eral.

1.3. Comparison to training on a different model

To evaluate the choice of training architecture, we also
include a model that is trained solely on BigGAN. To pre-
pare the training data, we generate 400k fake images from
an ImageNet-pretrained 256× 256 BigGAN model [3], and
take 400k ImageNet images with the same class distribution
as real images. For comparison, we train the model with the

same data augmentation as Blur+JPEG (0.5). We denote
this model as Blur+JPEG (Big). We see in Table 1 that
this model also exhibits generalization, albeit with slightly
lower results in most cases. One explanation for this is that
while our ProGANs model was trained on an ensemble (one
model per class), BigGAN images were generated with a
single model.

1.4. Training with images generated with a deep
image prior

Instead of generating fake images with GANs, which
have limited representational capacity and hence large syn-
thesis errors, we consider an “oracle” generation method
based on the deep image prior (DIP) [22]. We ask what
the very best reconstruction of an image is achievable via a
given network architecture, regardless of the synthesis task.
For each synthesized image in our dataset, we train a differ-
ent network to reconstruct it by minimizing `1 loss:

min
θ
||f(θi)− Ii||1, (1)

where f(θi) is the image generated by a neural network
parameterized with weights θi and Ii is a real image. We
use the reconstructed image f(θi) as an instance of a fake
image. During reconstruction, we use the Adam opti-
mizer [12] with β1 = 0.9, β2 = 0.999, and optimized with
a decreasing learning rate: 0.01 → 0.001 → 0.0001. For
each learning rate we optimize for 2000 iterations.

As training data, we take 44k real images randomly sam-
pled from ImageNet [21], and “fake” images are the recon-
struction by the generator of ProGAN (and hence 44k dif-
ferent networks). We take DIP images optimized for 1000,
2000, 3000, 4000, 5000, 6000 iterations into our “fake”
image set. We then train a classifier on this dataset, and
we over-sample the real images by 6 times to balance the
classes. All training configurations and augmentations are
same as Blur+JPEG (0.5). This model is denoted as DIP
in Tab. 1.

We note although this model does not perform as well as
the model directly trained on ProGAN images, but it is able
to detect several datasets, including StarGAN, CRN, SITD,
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Family Name
Training settings Individual test generators Total

Train Input
No.

Class
Augments Pro-

GAN
Style-
GAN

Big-
GAN

Cycle-
GAN

Star-
GAN

Gau-
GAN CRN IMLE SITD SAN

Deep-
Fake mAP

Blur JPEG

Nataraj et al. [17] – CycleGAN Co-occur. mtx – 76.4 96.5 56.4 100. 88.2 56.2 58.7 83.1 39.6 46.1 55.1 68.8
Cozzolino et al. [7] ForensicTransfer ProGAN HF residual – 88.9 77.9 79.5 77.2 91.7 83.3 99.9 31.3 72.8 90.8 79.2 79.3

DIP ProGAN-DIP RGB – X X 62.0 52.3 61.7 62.4 100. 49.0 98.2 38.6 92.8 93.1 63.1 70.3
Blur+JPEG (Big) BigGAN RGB 1000 X X 85.1 82.4 100. 86.2 87.4 96.7 79.7 82.6 91.2 71.9 60.3 83.9

Ours

2-class ProGAN RGB 2 X X 98.8 78.3 66.4 88.7 87.3 87.4 94.0 97.3 85.2 52.9 58.1 81.3
4-class ProGAN RGB 4 X X 99.8 87.0 74.0 93.2 92.3 94.1 95.8 97.5 87.8 58.5 59.6 85.4
8-class ProGAN RGB 8 X X 99.9 94.2 78.9 94.3 91.9 95.4 98.9 99.4 91.2 58.6 63.8 87.9
16-class ProGAN RGB 16 X X 100. 98.2 87.7 96.4 95.5 98.1 99.0 99.7 95.3 63.1 71.9 91.4
10% data ProGAN RGB 20 X X 100. 93.2 82.3 94.1 93.2 97.1 96.8 99.4 88.2 58.1 63.5 87.8
20% data ProGAN RGB 20 X X 100. 96.8 85.9 95.9 93.6 97.9 98.7 99.5 90.2 61.8 65.2 89.6
40% data ProGAN RGB 20 X X 100. 97.8 87.5 96.0 95.3 98.1 98.2 99.3 91.2 61.4 67.9 90.2
80% data ProGAN RGB 20 X X 100. 98.1 88.1 96.4 95.4 98.0 98.9 99.4 93.0 63.8 65.1 90.6

Blur+JPEG (0.5) ProGAN RGB 20 X X 100. 98.5 88.2 96.8 95.4 98.1 98.9 99.5 92.7 63.9 66.3 90.8

Table 1: Additional evaluations. We evaluate other baseline models, classifiers trained with DIP and BigGAN images, respectively, and
classifiers trained with various dataset size. Same as Table 2 in the main text, we show the average precision (AP) of the models tested
across 11 generators. For comparison, we include the ablations on the number of classes and the Blur+JPEG (0.5) model’s results, which
are presented in the main text. Symbols X means the augmentation is applied with 50% or probability at training. The color coding scheme
is identical to that of Table 2 in the main text. We note that when only the dataset size is reduced, AP dropped less comparing to reducing
the number of classes. Also, the model trained with ProGAN outperforms the baselines, DIP and Blur+JPEG (Big).

and SAN. This indicates that low-level artifacts shares
across different methods, but just leveraging on those may
not be sufficient for a general detection.

1.5. Comparison to other baselines

In the main text, we compared with Zhang et al. [24], a
state-of-the-art in GAN detection, and outperform it across
different synthesis methods. In addition, we include the
performance of Nataraj et al. [17], another GAN detec-
tion method trained on co-occurrence matrices of images,
and Cozzolino et al. [7], a few-shot single-target domain
adaption method trained on HF filtered images. For Coz-
zolino et al., we evaluate the ProGAN/CycleGAN model.
Both methods are evaluated on 256× 256 images in a zero-
shot setting, and if the image is larger than 256 pixels, it is
center-cropped to 256 pixels. The results are in Tab. 1.

1.6. Other evaluation metrics

To help clarify the threshold-less AP evaluation metric,
we also computed several other metrics (Table 2). We pro-
vide the precision and recall curve on each dataset from
our (Blur+JPEG (0.1)) model in Figure 1. We give the
uncalibrated generalization accuracy of the model on the
test distribution, by simply using the classifier threshold we
learned during training, and oracle accuracy that chooses
the threshold that maximizes accuracy on the test set. We
also consider a two-shot regime where we have access to
one real and one fake image from each dataset, and only the
model’s threshold is adjusted during the two-shot calibra-
tion process.

We calibrate the model by a single random real and fake
pair, and we augment the image pair by taking 224 × 224
random crops 128 times. The images are passed into the
model to get the logits, which are then fitted by a logistic

Figure 1: Precision and recall curves. The PR curves on each
dataset from the (Blur+JPEG (0.1)) model are shown. Note that
AP is defined as the area under the PR curve. Higher AP indicates
better trade-off between precision and recall, and vice versa.

regression (the method is also known as Platt scaling [19]).
We take the bias learned from the logistic regression to ad-
just the base rate of our model. Specifically, we apply the
bias to our model’s logit and then take the sigmoid to get
the calibrated probability.

1.7. Detecting GAN images from the internet

Unfortunately, there are currently no collections of “in-
the-wild” CNN-generated image datasets which we can
evaluate with our model. As a “proxy” testcase, we scraped
1k real face and 1k fake faces from whichfaceisreal.
com [2]. This is a website containing StyleGAN-generated
faces and real faces in 1024 pixels, with all images com-
pressed into JPEG. We tested our Blur+JPEG (0.1) model
on this testset in two scenarios: (1) directly center crop im-
ages to 224 pixels without resizing (matching how we test
StyleGAN) or (2) resize to 256 pixels then center crop to

whichfaceisreal.com
whichfaceisreal.com


StyleGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN DeepFake

Uncalibrated 87.1 70.2 85.2 91.7 78.9 86.3 86.2 90.3 50.5 53.5
Oracle 96.8 81.1 86.3 92.8 85.5 95.3 95.4 92.8 68.0 80.7
Two-shot 91.9 74.0 82.4 86.0 79.1 91.6 91.2 88.7 54.8 65.7

Table 2: Two-shot classifier calibration. We show the accuracy of the classifiers directly trained from ProGAN (“uncalibrated”), after
calibrating the threshold given two examples in the test distribution (“two-shot”) and an upper bound, given a perfect calibration (“oracle”).

Horse Zebra Summer Winter Apple Orange Facades Cityscape Map Ukiyoe Vangogh Cezanne Monet Photo Avg.

62.1 87.5 83.2 88.0 90.5 87.7 100. 66.6 78.0 85.4 76.9 82.8 56.2 86.8 80.8

Table 3: CycleGAN testcase. We evaluate the uncalibrated accuracy of Blur+JPEG (0.1) model tested on each CycleGAN category. We
note that our model is still able to perform well above chance (50%) even if not directly trained on any CycleGAN images.

224 pixels. Without resizing, the model gets 83.6% ac-
curacy and 93.2% AP. With resizing, the model drops to
74.9% accuracy and 82.6% AP, still well above chance
(50%). This indicates our model can be robust to resizing
and in-the-wild JPEG compression. However, maintaining
similar performance after significant post-processing (e.g.,
heavy resizing) remains challenging.

1.8. CycleGAN testcase

While prior works on GAN detection [16, 17, 24] train
on CycleGAN images and evaluate generalization across
CycleGAN categories, our method is not trained on any
CycleGAN images and tests generalization across methods
(a significantly harder task). Nonetheless, we still observe
comparable performance in terms of AP (Tab. 2 in the main
text) when compared to Zhang et al. [24]. For a further
comparison, we include our Blur+JPEG (0.1) model’s ac-
curacy on each CycleGAN category in Tab. 3.

2. Implementation Details
2.1. Dataset Collection

ProGAN [9] 1 We take 20 officially released ProGAN
models pretrained on LSUN [23] airplane, bicycle, bird,
boat, bottle, bus, car, cat, chair, cow, dining table, dog,
horse, motorbike, person, potted plant, sheep, sofa, train,
tv-monitor respectively. Following the official code, we
sample the synthetic images with z ∼ N(0, I), and
generate real images by center cropping the images just on
the long edge (center crop length is exactly the length of
the short edge) and then resizing to 256× 256

StyleGAN [10] 2 We take officially released StyleGAN
models pretrained on LSUN [23] bedroom, cat and car,
with size 256× 256, 256× 256 and 512× 384 respectively.

1
https://github.com/tkarras/progressive_growing_of_gans

2
https://github.com/NVlabs/stylegan

We download the released synthesized images, all of which
are generated with 0.5 truncation, and following the code,
we generate real images by resizing to the according size
of each category.

StyleGAN2 [11] 3 We take officially released StyleGAN2
config-F models pretrained on LSUN [23] church, cat,
horse and car, with size 256 × 256, 256 × 256, 256 × 256
and 512 × 384 respectively. We download the released
synthesized images, all of which are generated with 0.5
truncation, and following the code, we generate real images
by resizing to the according size of each category.

BigGAN [3] 4 We take officially released BigGAN-deep
model pretrained on 256×256 ImageNet images. Following
the official code, we sample the images with uniform class
distribution and with 0.4 truncation; also, we generate real
images by center cropping the images just on the long edge
(center crop length is exactly the length of the short edge)
and then resizing to 256× 256.

CycleGAN [25] 5 We take officially released CycleGAN
models: apple2orange, orange2apple, horse2zebra, ze-
bra2horse, summer2winter, winter2summer, and generate
real and fake image pairs out of all six categories. Pre-
processed real images and synthetic images are directly
generated from the released code.

StarGAN [6] 6 We take officially released StarGAN
model pretrained on CelebA [15], and generate real and
fake image pairs. Pre-processed real images and synthetic
images are directly generated from the released code.

GauGAN [18] 7 We take officially released GauGAN
model pretrained on COCO [14], and generate real and fake

3
https://github.com/NVlabs/stylegan2

4
https://tfhub.dev/s?q=biggan

5
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

6
https://github.com/yunjey/stargan

7
https://github.com/NVlabs/SPADE
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image pairs. Pre-processed real images and synthetic im-
ages are directly generated from the released code.

CRN [5] 8 We take officially released CRN model pre-
trained on GTA, and generate synthesized images from pre-
processed segmentation maps. Pre-processed real images
and segmentation maps are downloaded from the IMLE
repository.

IMLE [13] 9 We take officially released IMLE model pre-
trained on GTA, and generate synthesized images from pre-
processed segmentation maps. Pre-processed real images
and segmentation maps are downloaded from the official
repository.

SITD [4] 10 We take officially released pretrained model
and the dataset by Sony and Fuji cameras from the repos-
itory. Pre-processed real images and synthetic images are
directly generated from the released code.

SAN [8] 11 We take both the ground truth and the offi-
cially released 4x super-resolution predictions on the stan-
dard benchmark datasets: Set5, Set14, BSD100 and Ur-
ban100. The synthetic images are directly downloaded from
the repository.

DeepFake [20] 12 We download raw manipulated and
original image sequences in the validation and test split of
the Deepfakes dataset. We extracted all frames from the
videos, and in each frame a face is detected and cropped
using Faced [1]. Similar to [20], our dataset is comprised
entirely of cropped faces.

2.2. Training details

To train the classifiers, we use the Adam optimizer [12]
with β1 = 0.9, β2 = 0.999, batch size 64, and initial learn-
ing rate 10−4. Learning rate are dropped by 10× if after 5
epochs the validation accuracy does not increase by 0.1%,
and we terminate training at learning rate 10−6. One excep-
tion is that, in order to balance training iterations with the
size of the training set, for the {2, 4, 8, 16}-class models
and the {10, 20, 40, 80}%-data models, the learning rate is
dropped if the validation accuracy plateaus for {50, 25, 13,
7} epochs instead.
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