Cross-Batch Memory for Embedding Learning
Supplementary Materials

1. Results on More Datasets

We further verify the effectiveness of our Cross-Batch
Memory (XBM) on three more datasets. CUB-200-2011
(CUB) [11] and Cars-196 (Car) [5] are two widely used
fine-grained datasets, which are relatively small. DeepFash-
ion2 [2] is a large-scale dataset just released recently. The
details and evaluation protocols of the three datasets are de-
scribed as below.

CUB-200-2011 (CUB) contains 11,788 birds images of 200
classes. There are about 60 images/class. Following [11],
we use 5,864 images of 100 classes for training and the re-
maining 5,924 images for testing.

Cars-196 (Cars) contains 16,185 images in 196 model cat-
egories, Following [5], we use the first 98 models for train-
ing with the rest for testing.

DeepFashion2 contains 216K clothes images with over
686K commercial-consumer pairs in the training set, whose
size is nearly 7 times of In-shop. We use ground truth
boxes in training and testing. We follow evaluation proto-
col described in [2], using 10,990 commercial images with
32,550 items as a query set, and 21,438 commercial images
with 37,183 items as a gallery set.

XBM meets Pair-based DML. We show that XBM con-
sistently improves the performance of various pair-based
methods on the three datasets. For instance, by applying our
XBM to the conventional contrastive loss, we achieve sig-
nificant Recall@1 improvements on CUB with +4.4% and
Cars with +7.8%, as shown in Table 3. On the large-scale
DeepFashion2, XBM has a large improvement of +11.2%
as shown in Table 5.

Comparison with the State-of-the-art. We compare our
method with existing methods in Table 4. On CUB, our
XBM with a contractive loss achieves the best recall@1 of
65.8% without any tricks. On Cars, except ABE [4] and A-
Bier [8], our XBM augmented contrastive loss reaches the
best performance using GoogleNet.

In fact, we observed that several tricks can improve the
performance significantly on small-scale datasets. For ex-
ample, freezing BN layer [12, 9] can increase recall@1 by
more than 2% on CUB and Cars, or applying a 10 times
smaller learning rate on the pretrained backbones [7]. How-
ever, these tricks show no effect on large-scale datasets e.g.
SOP, In-shop and VehiclelD, which contains sufficient data

momentum m 0 0.01 0.1 0.5 0.9
sor 78.2 77.4 78.2 76.8 75.8
In-shop 89.3 88.9 89.3 87.0 83.7
CUB 60.3 60.3 60.0 60.2 61.8
Cars 78.8 79.1 79.2 78.3 80.6

Table 1: Recall@1(%) performance of moving average up-
date mechanism with different momentum m.

learningrate | 0 0.01 0.1 0.5 0.9
SOP 782 772 716 182 782
In-shop 89.3 887 890 878 884
CUB 603 602 607 600 594
Cars 78.8 78.8 79.3 77.9 77.8

Table 2: Recall@1(%) performance of BP update mecha-
nism with different memory learning rates «

to mitigate overfitting. Note that to demonstrate the ac-
tual effectiveness of our XBM module, the performance of
our XBM reported here was trained without such bells and
whistles.

2. Memory Update

We develop a simple enqueue-dequeue mechanism to
update the memory bank of our XBM: enqueue the latest
features, and at the same time dequeue the oldest ones.
In this experiment, we evaluate two alternative memory
update mechanisms: moving average [13, 14] and back-
propagation [6], on SOP, In-shop, CUB and Cars datasets
with GoogleNet as backbone. Furthermore, we also con-
duct a faster updated XBM to investigate the effect of fea-
ture drift.

Moving Average Update. Update a memory embedding v;
with its current feature v; as following:

v; = mu; + (1 —m)v;
v; = vi/|[vi |2,

where m is the momentum for the moving average update.
The embeddings in memory is updated slower when the
momentum m becomes larger. We study the impact of mo-
mentum m to the performance in Table 1. We observed that
training with a large momentum can benefit a small dataset
(e.g. CUB or Cars), but may impair the performance on a
large-scale dataset (e.g. SOP or In-shop). It is reasonable

CUB Cars

Recall@K (%) 1 2 4 8 16 32 1 2 4 8 16 32

Contrastive 57.5 69.0 78.8 86.3 92.0 96.0 72.5 81.3 87.9 92.4 95.3 97.5
Contrastive w/ M 61.9 72.9 81.2 88.6 93.5 96.5 80.3 87.1 91.9 95.1 97.3 98.2
Triplet 58.1 69.6 79.7 87.5 92.8 96.2 72.4 81.7 88.1 92.7 95.5 97.3
Triplet w/ M 60.0 71.1 80.7 88.0 93.2 96.4 78.5 86.4 91.6 94.8 96.9 98.4
MS 58.2 69.8 79.9 87.3 92.8 96.0 75.7 84.6 90.1 94.4 96.9 98.4
MS w/M 61.8 72.3 81.5 88.5 93.0 96.1 76.5 84.1 90.0 93.8 96.3 98.0

Table 3: Retrieval results of XBM augmented (‘w/ M’) pair-based DML methods and baseline methods with GoogleNet on

CUB and Cars.
CUB Cars
Recall 0K (%) 1 2 4 8 16 32 1 2 4 8 16 32
Smart Mining [3] G* 49.8 62.3 74.1 83.3 - - 64.7 76.2 84.2 90.2 - -
HDC [10] G384 53.6 65.7 77.0 85.6 91.5 95.5 73.7 83.2 89.5 93.8 96.7 98.4
A-BIER [8] G2 57.5 68.7 78.3 86.2 91.9 95.5 82.0 89.0 93.2 96.1 97.8 98.7
ABE [4] G2 60.6 71.5 79.8 87.4 - - 85.2 90.5 94.0 96.1 - -
Clustering [10] B 482 61.4 71.8 81.9 - - 58.1 70.6 80.3 87.8 - -
ProxyNCA [6] Bo* 492 61.9 67.9 72.4 - - 732 82.4 86.4 87.8 - -
HTL [1] BS12 57.1 68.8 78.7 86.5 9.5 95.5 81.4 88.0 92.7 95.7 97.4 99.0
MS [12] B312 65.7 77.0 86.3 91.2 95.0 97.3 84.1 90.4 94.0 96.5 98.0 98.9
SoftTriple [9] BS12 65.4 76.4 84.5 90.4 - - 84.5 90.7 94.5 96.9 - -
Contrative w/ M G2 61.9 72.9 81.2 88.6 93.5 96.5 80.3 87.1 91.9 95.1 97.3 98.2
Contrative w/ M B312 65.8 75.9 84.0 89.9 94.3 97.0 82.0 88.7 93.1 96.1 97.6 98.6
Table 4: Recall@ K (%) performance on CUB and Cars.

Recall @K (%) 1 10 20 Recall@k(%) | 1 10 100 1000

Match RCNN [2] 26.8 57.4 66.5 update x 1 774 89.6 95.4 98.4

Contrative G2 29.3 51.9 60.3 update x 10 77.4 89.8 95.5 98.5

s 512
SZEZ:EXZ z;ﬁ §512 383 gzi 222 Table 6: Recall@k(%) performance on SOP with update
Contrativew/M R!% | 419 646 707 x1 and x10 configurations.

Table 5: Recall@ K (%) performance on DeepFashion2.

because on a small-scale dataset, the training epoch is short
(e.g. 100 iters.), which enables a small feature drift between
adjacent epochs, while a large-scale dataset has a longer
epoch, and the features computed at the past epochs are
highly possible to be out-of-date, and thus a large momen-
tum may hinder the training process. Moreover, the moving
average update may benefit the training by enhancing the
embeddings in the memory by aggregating its embeddings
of an instance with different augmentations when the fea-
ture drift is small.

Back-Propagation (BP) Update. Besides substituting the
memory features of instances sampled into current mini-
batch, BP method updates the memory features of each in-
stance based on its gradients computed at back-propagation
(BP):

17@:51-’-&7

ov;
v; = v;/[|vi 2,

where « is the learning rate of memory features.
In BP update, the memory embeddings are optimized

along with the model, and serve as proxies in proxy-based
DML methods [6, 9]. Obviously, BP requires much more
memory and computational cost to compute and save the
gradients compared to our XBM. However, it cannot obtain
clear performance improvements in all datasets as shown in
Table 2. This suggests that the embeddings drift slowly, and
the past mini-batches can largely represent the distribution
of current embedding space.

Faster Update. Generally, we update the XBM with one
mini-batch at each iteration (x1). To further evaluate the
side effect of feature drift in our XBM, at each iteration,
ten mini-batches (x10) are enqueued into the XBM mem-
ory queue. This accelerates XBM update 10 times faster,
which makes the feature drift smaller. As shown in Table 6,
the x 10 update cannot bring clear performance gain, which
suggests that the natural feature drift is slow enough and
cannot hinder the performance.

3. Feature Drift on General Tasks

“Slow drift” phenomena not only exist in pair-based
DML, but also happen in other machine learning tasks, e.g.
image recognition. Figure 1 illustrates that the normalized

2.0 At=1000
— At=100
At=10

15
H
=
2
2 1.0f
<
&

0.5

N
0'00 2 4 6 8 10 12
iter. (1e4)

Figure 1: Feature drift with different steps of ResNet50 on Im-
ageNet trained from scratch. The embeddings drift within a rela-
tively small distance even under a large interval, e.g. At = 1000.

embeddings at global pooling layer of ResNet50 drift at a
slow rate when trained with cross entropy loss on ImageNet
dataset.

4. Hyperparameters

In Table 7, we list all the key hyperparameters applied
in our experiments. Our XBM achieves outstanding per-
formance on large-scale datasets and comparable results on
small-scale datasets without any training trick or large train-
ing iterations.

init. Ir. Ir.x0.1 totaliter. Ry(%) o m
SOP 3e-4 24k 34k 1 0 0
In-shop 3e-4 24k 34k 0.2 0o 0
VehicleID le-4 30k 50k 0.5 0 0
DeepFashion2 | 3e-4 20k 36k 1 0o 0
CUB 3e-5 - 1.4k - 02 09
Cars le-4 1.4k 2k - 0.1 09

Table 7: Hyperparameters used in training memory aug-
mented models to compare with state-of-the-art.

5. Proof of Lemma 1

Proof. The gradient of the accurate loss and the approxi-
mated loss can be computed as below:

oL OL v, O,
90 v, 00 700
L AL dv; . v
90 v, 00 100

Then, the gradient error is:

oL L1z i2
|76 - 56ll, = s -5,
<|lv; - 1’J||2H8vZ 5 (1)
o [z
< Ce. i
O

, 2
iri Of (z:;6%)
Empirically, we observed that HTH

is usually
2
less than 1 so that the gradient error can be strictly con-

trolled by the small feature drift.

6. Visualization.

We visualize a number of samples to investigate the per-
formance of our XBM, including the mined negatives in
training and the retrieved examples in testing. All examples
are randomly selected from SOP, In-shop and VehicleID by
following some rules.

Figure 2 demonstrates the hard negatives mined from
memory with over 0.5 similarities. The negatives in each
row are uniformly sampled from a sequence sorted by simi-
larities. These results clearly demonstrate that the proposed
XBM can provide diverse, visually related, and even fine-
grained samples to construct informative negative pairs.

Furthermore, we select the anchors having a similarity
with the hardest samples over 0.8, and show the top 10 neg-
atives in Figure 3. Some of the presented negatives are ex-
tremely similar or even exactly the same items with corre-
sponding anchor images.

References

[1] Weifeng Ge, Weilin Huang, Dengke Dong, and Matthew R
Scott. Deep metric learning with hierarchical triplet loss. In
ECCV,2018. 2

[2] Yuying Ge, Ruimao Zhang, Lingyun Wu, Xiaogang Wang,
Xiaoou Tang, and Ping Luo. A versatile benchmark for de-
tection, pose estimation, segmentation and re-identification
of clothing images. CVPR, 2019. 1,2

[3] Ben Harwood, Vijay Kumar B G, Gustavo Carneiro, lan
Reid, and Tom Drummond. Smart mining for deep metric
learning. In ICCV, 2017. 2

[4] Wonsik Kim, Bhavya Goyal, Kunal Chawla, Jungmin Lee,
and Keunjoo Kwon. Attention-based ensemble for deep met-
ric learning. In ECCV, 2018. 1, 2

[5] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
1CCV Workshops, 2013. 1

[6] Yair Movshovitz-Attias, Alexander Toshev, Thomas K. Le-
ung, Sergey loffe, and Saurabh Singh. No fuss distance met-
ric learning using proxies. In ICCV, 2017. 1,2

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
Savarese. Deep metric learning via lifted structured feature
embedding. In CVPR, 2016. 1

M. Opitz, G. Waltner, H. Possegger, and H. Bischof. Deep
Metric Learning with BIER: Boosting Independent Embed-
dings Robustly. PAMI, 2018. 1, 2

Qi Qian, Lei Shang, Baigui Sun, and Juhua Hu. Softtriple
loss: Deep metric learning without triplet sampling. ICCV,
2019. 1,2

Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, and Kevin
Murphy. Deep metric learning via facility location. In CVPR,
2017. 2

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Master’s the-
sis, 2011. 1

Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and
Matthew R Scott. Multi-similarity loss with general pair
weighting for deep metric learning. In CVPR, 2019. 1, 2
Zhirong Wu, Alexei A Efros, and Stella Yu. Improving gen-
eralization via scalable neighborhood component analysis.
In ECCV, 2018. 1

Zhun Zhong, Liang Zheng, Zhiming Luo, Shaozi Li, and Yi
Yang. Invariance matters: Exemplar memory for domain
adaptive person re-identication. In CVPR, 2019. 1

whnr .

eCET S @

w.&llll

), and multiple negatives mined from memory (purple)

), we present examples of a positive (

Figure 2: Given an anchor image (

uniformly sorted from hard to simple. The demonstrated anchors are randomly chosen from training datasets.

- -

and top 10 negatives mined from memory (purple).

5

)

we present examples of a positive (

)

)

Figure 3: Given an anchor image (

The examples are randomly chosen from anchors whose top 1 negative has over 0.8 similarity.

Cont.w/oM

W

——

Figure 4: Top 5 retrieved images w/o and w/ memory module. We randomly select the examples with the correct top 1 predictions given
by our XBM but incorrect by the baseline model. Correct results are highlighted with , while incorrect purple.

Cont.w/oM

Iw,

=]

Figure 5: Top 5 retrieved images w/o and w/ memory module. We randomly select the examples with the wrong top 1 predictions by both

, while incorrect purple.

the baseline model and our XBM. Correct results are highlighted with

